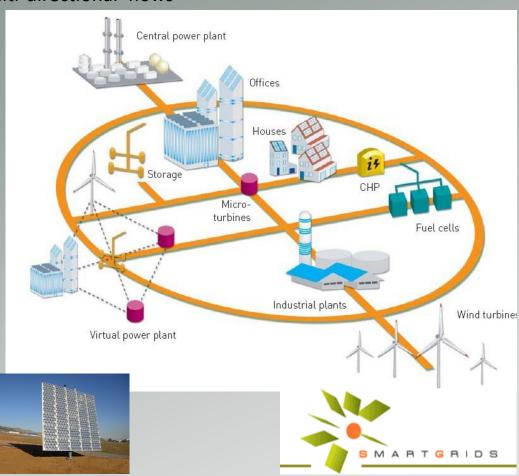




# Energy trends – Smart Grids where power meets intelligence

Ronnie Belmans

K.U.Leuven, Belgium ronnie.belmans@esat.kuleuven.be


Siemens City Wien, Vienna, 3 November 2010





### **Smart Grids Vision**

#### Multi-directional 'flows'



Central & dispersed sources

End user real time Information & participation

Seamless integration of new applications



Central & dispersed

intelligence



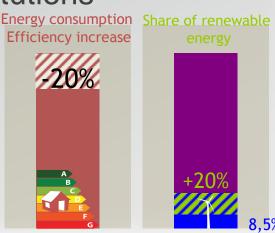


Smart materials and power electronics





# Directorate-General for Energy

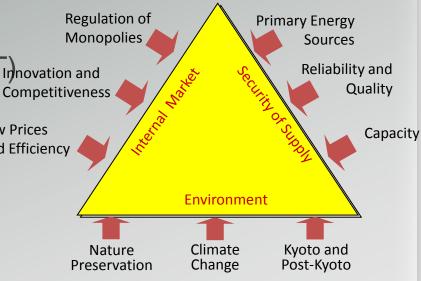

- Decarbonised European Economy: Five Priorities towards 2020 - 2050
  - Create grass-roots demand for energy saving equipment and services



- Improve *investment conditions* in low-carbon energy and replacements of generating capacity and networks
- Keep leadership in having world renowned renewable energy companies and research institutions
- Reassuring a safe, secure, reliable energy system
- Strengthening the dimension of the internal *market*












# Directorate-General for Energy

- Three Agencies
  - ACER: Agency for the Cooperation of Energy Regulators
  - EACI: Executive Agency for Competitiveness & Innovation
  - ESA: Euratom Supply Agency
- Actions
  - Technology & Innovation (SETi)novation and
  - Infrastructure (EEGI)
  - Renewable energy (NER300) Low Prices And Efficiency
  - Research (EERA, ERA Net+)
  - •
- Stakeholders
  - Industrial Partners (Eurelectric)
  - System Operators (e-DSO, ENTSO-E)



Source: European Commission of Energy, website





# Technology & Innovation

### SET-plan

- Accelerating development and deployment of cost-effective low carbon technologies
- The appeal lange land gall landing life.

  SET-Plan
  Towards a low-carbon future
- Industrial Initiative with large scale pilot projects
- Themes:
  - Wind, Solar
  - Nuclear
  - CCS
  - Bio-energy
  - Green Cars
  - Fuel cells
  - Hydrogen
  - Smart Cities
  - Electricity Grids
  - Sustainable Energy





European Industrial Initiative

#### Research



European Energy Research Alliance

#### Education





Financing



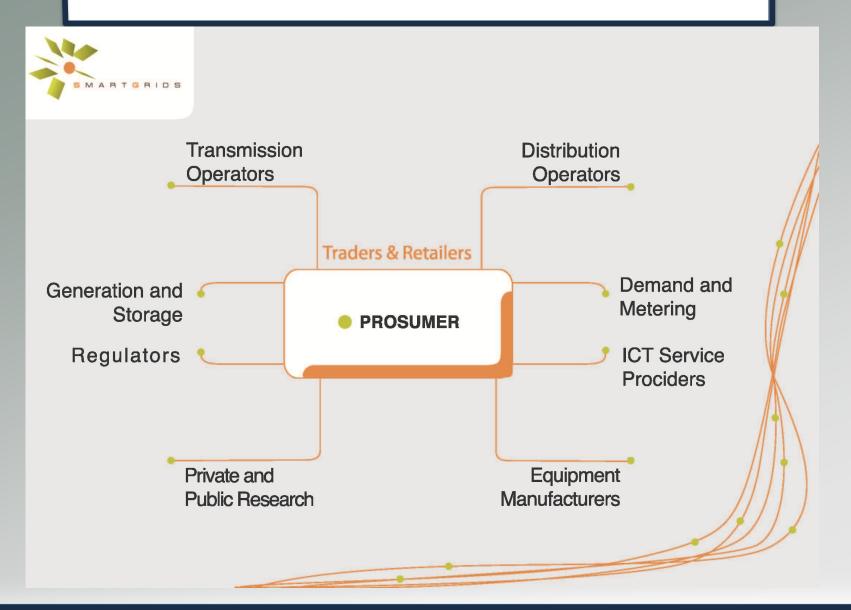
European Research Area





### Infrastructure

- The European Electricity Grid Initiative (EEGI)
  - Accelerating development and deployment of electricity networks capable of handling the massive deployment of renewable and decentralised energy sources as proposed by the SET-plan
  - Initiative of the System Operators (EDSO, ENTSOE)
  - Theme:
    - Active Smart Grid
      - TWENTIES, PEGASE, REALISEGRID
    - New Market Rules
      - OPTIMATE
    - Intelligent Metering




Source: The European Electricity Grid initiative, Roadmap 2010-18 and Detailed Implementation Plan 2010-12, 25<sup>th</sup> May 2010 [online]





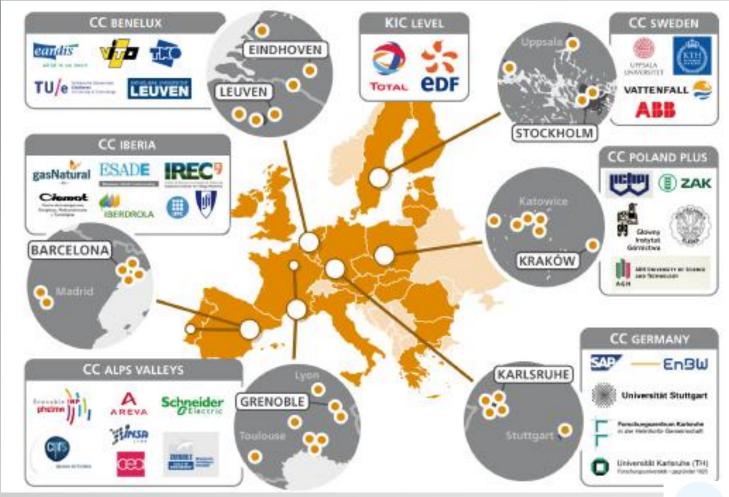
## Infrastructure







# Renewable Energy


#### NER300

- Subsidises installations of innovative renewable energy technologies and Carbon Capture and Storage
- 300 million allowances in the New Entrants' Reserve of the European Emissions Trading Scheme
- Themes
  - Innovative Renewable Energy
    - Biofuels, solar, wind, geothermal, hydro, ocean, ...
  - Grid Integration
  - Carbon Capture Storage





### Research & Education



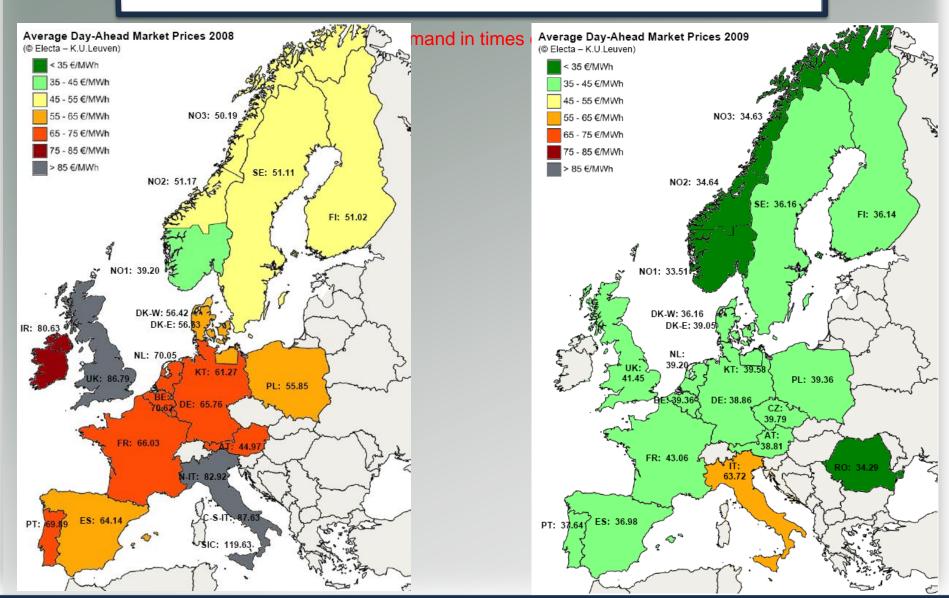




## Triangular challenge: Climate-Market-Security of Supply



One European policy...

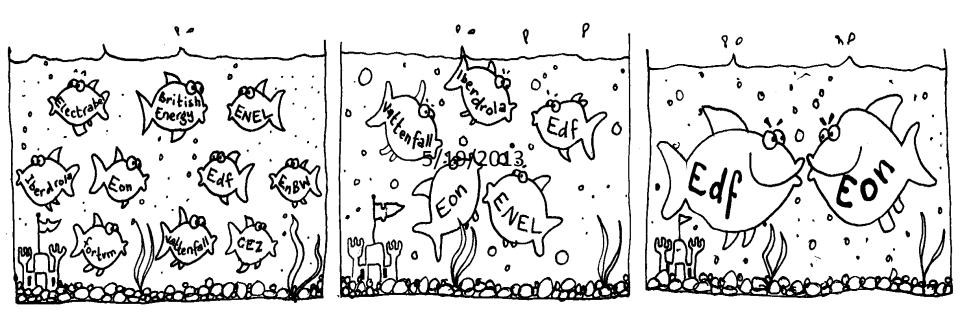

three goals that have to converge simultaneously!!







## Competitiveness & Affordability








# Competitiveness & Affordability

#### EU market building slower than industry consolidation?



Big fish, small pond





# Sustainability

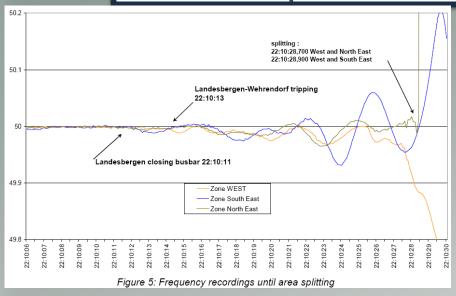


#### **Desertec**

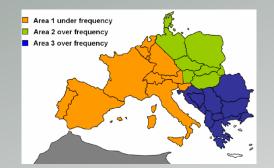
One of several concepts in bringing sustainable energy sources to Europe, but the main ideas in different concepts are:

- Offshore Wind from the North
- Solar energy from the South
- Hydro from Scandinavia and the Alps

#### **PHEV**

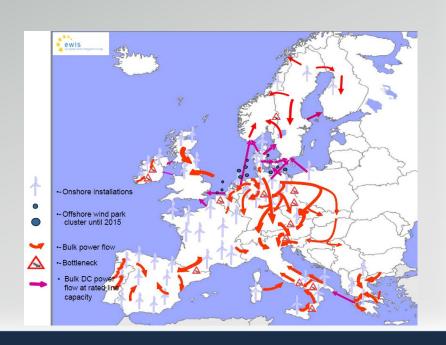

- Decrease dependency on fossil fuels and (volatile and/or high) oil prices
- Limit greenhouse gas emissions in transportation via sustainable electricity production







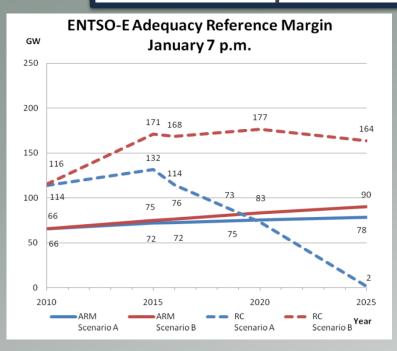



#### Disturbance of 4 November 2006



#### **European Wind Integration Study**


2015 Physical Power Flow Patterns (High Wind North)





# Security of supply examples of long term issues





Diversify primary energy resources

#### Nabucco natural gas pipeline

An example of diversifying natural gas supply

#### **Generation adequacy**

ARM: Adequacy Reference Margin RC: Remaining Capacity

#### Overall European pictures looks ok, but

- Think of lead times
- Regional demand-supply balances are also important







### Target:

CO<sub>2</sub> neutral electric energy supply in Europe by 2050

Objective behind:

Keep global temperature rise below 2°C above preindustrial level



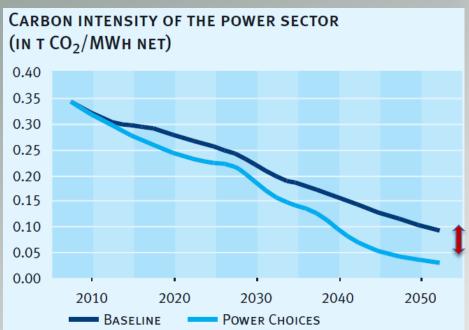






# Impossible?






- Study using the PRIMES energy model:
   "Power Choices Pathways to Carbon-Neutral Electricity in Europe by 2050"
  - Baseline
    - Meeting 2020 CO<sub>2</sub> targets
    - Nuclear phase-out
    - Electricity does not become major transport fuel towards 2050
  - Power choices scenario
    - 75% CO2 emission reduction target for entire economy by 2050
    - Carbon market for all sectors
    - Standards energy efficiency
    - Facilitate intelligent grids
    - Electricity becomes major transport fuel towards 2050









 "Power Choices" scenario shows promising CO<sub>2</sub> emission reduction benefits





#### Generation-side

- Energy efficiency
- Nuclear
- CCS
- Renewables

|   |                           | 2007  | 2020  | 2030  | 2050  |
|---|---------------------------|-------|-------|-------|-------|
|   | Wind                      | 56    | 180   | 288.5 | 462   |
|   | Hydro <sup>1</sup>        | 102   | 120   | 148   | 194   |
|   | PV                        | 4.9   | 150   | 397   | 962   |
| Ы | Biomass                   | 20.5  | 50    | 58    | 100   |
|   | Geothermal                | 1.4   | 4     | 21.7  | 77    |
|   | CSP                       | 0.011 | 15    | 43.4  | 96    |
|   | Ocean                     | -     | 2.5   | 8.6   | 65    |
|   | Total RES-E capacity (GW) | 185   | 521.5 | 965.2 | 1,956 |
|   |                           |       |       |       |       |

#### Demand-side

- Energy efficiency & Intelligent consumption
  - Residential
    - Smart appliances
    - Intelligent heating/cooling
    - insulation
  - Transportation
    - Electric vehicles

EREC: RE-thinking 2050

Required paradigm shift on the demand-side





### Key outcome

- Carbon-neutral power in Europe by 2050 is achievable
- The major CO<sub>2</sub> reduction in the power sector occurs during 2025 to 2040
- All power generation options and policies to foster energy efficiency, are all needed simultaneously
- A paradigm-shift is needed on the demand side: intelligent electricity systems should replace direct use of fossil fuels
- The Power Choices scenario minimizes energy import dependency





- Policy recommendation
  - International agreement on climate change needed to
    - Reach emissions at least cost
    - Internalize cost of emissions in all sectors
  - Facilitate the electrification of road transport and spatial heating & cooling
  - Encourage public acceptance of modern energy infrastructure, especially grids, onshore wind and CO<sub>2</sub> storage sites











### The vision of the power industry



- European Electricity Sector CEOs
   Declaration 18 March 2009
  - ACHIEVE a carbon-neutral power supply in Europe by 2050
  - DELIVER power cost-efficiently and reliably through an integrated electricity market
  - PROMOTE energy efficiency and electricity use as solutions to mitigate climate change





## How will the future grid look like?

Can we manage by stretching the current 380 kV grid to its limits?



"Stretching" Was successful for trains

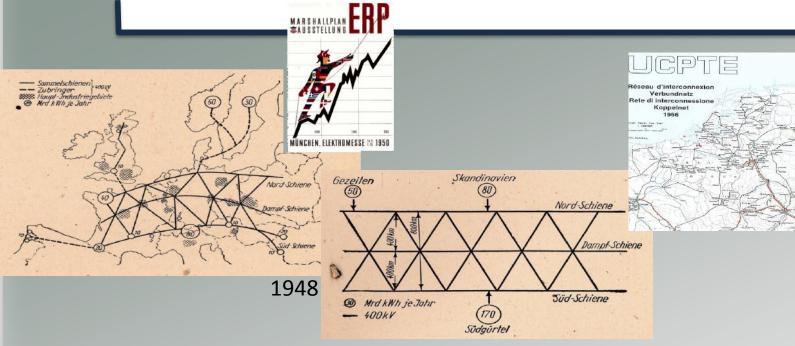


Or do we need a new overlay grid, a new paradigm?

Be aware of the "sailing ship syndrome"...



We must accept the limits of today's situation








1956

# Back to the future



### A renewed grid vision?



2020 2050 ...



DC components New substation New link < 1 GW New link >= 1 GW



# Stretching: ENTSO-E's TYNDP

Excerpt from ENTSO-E's Map of Pan-European Projects 2020-2050







# Stretching: ENTSO-E's TYNDP

# However, ENTSO-E does acknowledge the potential of "supergrid" concepts!

## Technological issues

- Technical feasibility of existing transmission concepts
- · Proper technology;
  - AC, DC (also reliable multiterminal solutions) and mixed
  - OHL / cables / etc
- Power quality / Level of SoS
- · Voltage level / EMF
- Upgrade of existing HV lines to UHV AC/DC
- · Technological improvements
- · Electricity storage
- · Power reserve margin
- · Level of reliability

### Economical/financial issues

Supergrid

- Different generation and load scenarios
- Cost/benefit (business case) of scenarios
- · Electricity prices
- Financial demand per scenario
- Realization and ownership of the Supergrid
- · European funding
- Potential investors

### Political/sociopolitical issues

- Legal and regulatory framework
- Social acceptance / Public support of the Supergrid
- Permitting processes, harmonization of national rules
- European policy on Demand Side Management
- New areas to be incorporated;
   e.g. MENA, Russia, Nordic
- Political stability of regions
- Risk of terrorists attacks

Source: ENTSO-E, TYNDP (June, 2010)





# New paradigm: Some suggestions





### **HVDC**



more than just a point to point connection?

- DC power transmission is not new
  - 'War of Currents' (1880): AC (Westinghouse) vs. DC (Edison)



- HVDC: High Voltage Direct Current
  - First HVDC link operational in 1954 (Gotland, Sweden)
- Two technologies
  - Current Source Converter (CSC) technology
  - Voltage Source Converter (VSC) technology





### State-of-the-art

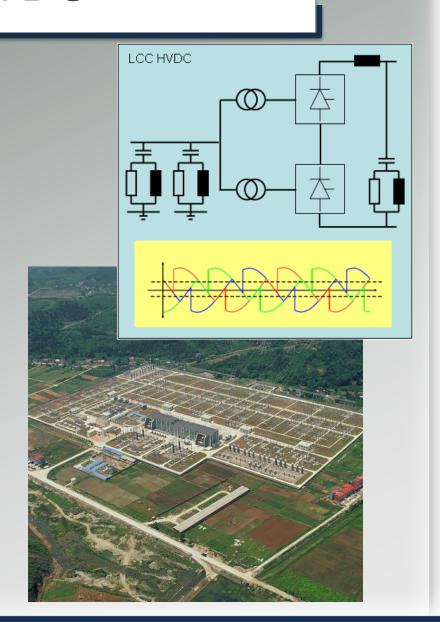
### **Existing**

- CSC HVDC
  - 6300 MW
  - ±600 kV DC
  - 785 km + 805 km

- VSC HVDC
  - 350 MW
  - ±150 kV DC
  - 180 km

### **Currently possible**

- CSC HVDC
  - 6400 MW
  - ±800 kV DC
  - 2000 km

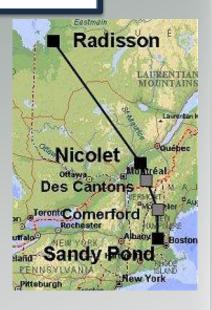

- VSC HVDC
  - 1100 MW
  - 350 kV DC

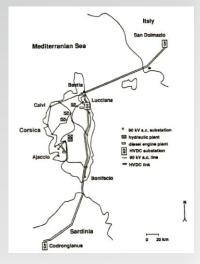




### CSC HVDC

- Steady increase in ratings
  - Shanghai-Xiangjiaba (2011):
     800 kV; 6,4 GW; 2071 km
- Large filter requirements
  - footprint
- Strong AC grid required
  - Problems to connect at weak connection points
- Not viable for offshore applications
  - Rely on the AC grid voltage for commutation



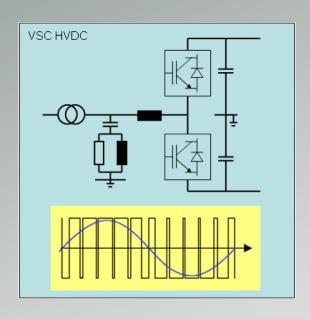



# CSC HVDC - Multi-terminal

- Limited experience
  - Only two 'pseudo-multi-terminal' links exist
- Hydro Québec New England (1992)
  - Extended to 3-terminal
  - Originally planned: 5-terminal but cancelled
  - Fixed direction of power
- Mainland Italy-Corsica-Sardinia (1992)
  - 1965: monopolar between mainland and Sardinia
  - 1987: converter added in Corsica
  - 1990: mercury arc replaced by thyristors
  - 1992: second pole added
- General multi-terminal CSC HVDC operation is not feasible
- → CSC for offshore multi-terminal HVDC is a dead end ...







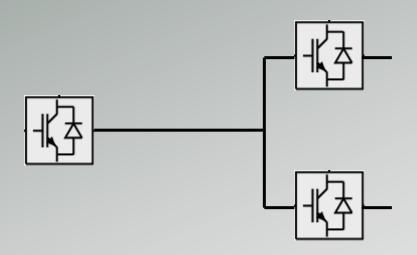



### VSC HVDC

New concept based on switches with turn-off capability






- Characteristics:
  - No voltage source needed to commutate
  - Very fast
  - Very flexible: independent active and reactive power control
  - Less filters → reduced footprint





## VSC HVDC - Multi-terminal

- VSC HVDC only developed for point-to-point, but...
- …looks very promising for MTDC
  - Converter's DC side has constant voltage → converters can be easily connected to DC network.
- Extension to 'pseudo-multi-terminal' systems straightforward: e.g. star-connections









# VSC HVDC – offshore applications

- Modified design
- Troll (2005)
  - First offshore HVDC converter
  - 40 MW, 70 km from shore
  - Oil-platform







### Borwin alpha (2010)

- First offshore HVDC converter for wind power
- 400 MW
- 200 km





## VSC HVDC – wind applications

- No cable length issues
- Wind farms are independent of power system
  - Do not need to run on main/fixed frequency
- Multiple wind farms can be connected to offshore grids
- This could lead to a 'supergrid' ...







# HVDC Conclusions & future challenges

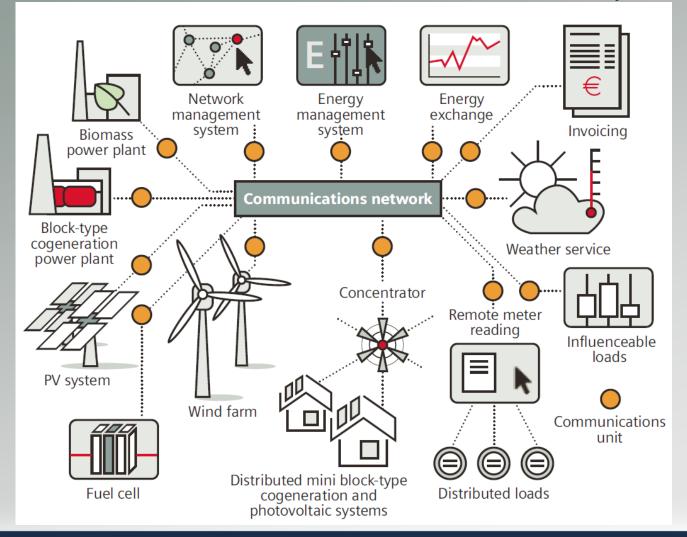


- CSC HVDC
  - Stretching not possible
    - Too large
    - Grid voltage needed
- VSC HVDC
  - Stretching possible
    - Small footprint
    - Passive grid operation
    - Technical characteristics suited to wind applications
    - Offshore applications proven
  - Technical challenges remain...
    - DC breaker
    - Fast fault detection and localisation
    - Losses
    - Ratings
    - DC voltage control
    - ...but can be solved
  - Need to further look into economical and political challenges





- Virtual Power Plant:
  - Dispersed generation
  - Dispersed Storage
  - Controllable loads


Aggregated to work as a conventional power plant

- Not necessarily by physically connecting plants but by interlinking them via soft technologies (ICT)
- VPP as key delivery mechanism to provide access of DER
  - to energy market (commercial aggregation)
  - to ancillary and network management services markets (grid aggregation)
- The goal is to manage DER to provide as much services as a conventional generators





Advanced IT is the core element of a virtual power plant!







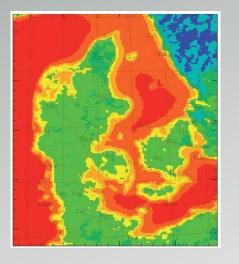
- Why do we need a VPP?
  - Dispatchability: Aggregation creates units dispatchable by TSO (several MW) and DSO
  - ➤ Visibility: Aggregators can give transparency to TSO/DSO of their aggregated resources, providing real-time information
  - Deterministic behaviour: Adequate aggregation can perform close to conventional power plants (e.g.: Wind+CHP+DSM)
  - ➤ Entry of new agents: Non-network owners can create value thanks to the existing flexibility of DER and DSM





#### Services of VPP

- Locally performed ancillary services
  - Voltage control and reactive power supply
  - Optimize grid losses, local power quality
  - Local (distribution network) congestion management
  - Islanded operation capacity
- System wide ancillary services
  - Frequency control
  - Active power reserve
  - Network restoration






### Denmark

- Large share of Wind production
  - Installed capacity: 3,482 GW (2009)
  - Electricity generated: 6,72 TWh in 2009
    - Load factor: 20%
    - 16% of national demand
- Dong Energy's vision







Integration of large amount of wind power causes both energy and power balancing issues





- Wind carpet or Virtual Power Plant
  - Many wind farms joined together to form what is effectively a large, virtual power station
- Wind farms, in different parts of the country, will be observed giving very different outputs at the same time
  - However, from time to time, a cyclone covers the whole of west Denmark.



# Load management: Smart metering and communication



"an RTU at every service head"

the portal to demand & micro-

operational visibility of local networks

gen services

losses management & rewards



load-limiting & remote disconnection

intelligent demand control in emergencies

moving consumption

new services to delight customers....



# Grid require smart metering to increase flexibility



- More electrical consumption
  - +1à2% per annum
- Unpredictable generation
  - photovoltaics (PV), wind,...
- Storage is not possible yet
  - battery storage, electric car batteries,...?
- Communication required





## Increased flexibility

### Load control

- active demand management
  - Easily controllable loads: heating, ventilation, airco future: also electric vehicles
  - Moderately controllable loads: washing machines, dryer, dish washer, freezer,... (residential constraints!)
- besides passive demand response
  - awareness, different tariff schemes (e.g. real-time pricing)
- Storage control
  - e.g. electric vehicles (plug-in and/or full EV)
- Distributed generation control
  - limiting peak PV power can allow more PV energy





## What is Smart metering?

- AMR automated meter reading
- AMM automatic meter management
  - AMR + dimming, shutdown, reconnection, etc.
    - AMI automated meter infrastructure
  - includes bidirectional communication technology
- Smart meters
  - AMM + real-time control
    - streaming, demand response, ....





AMR 1: Actaris ACE 4000 RF AMR 3 - Telvent/Echelon

AMR 2 - Iskraemeco MT 351





## Monitoring and control applications

- End-user management
  - demand response applications
    - peak shaving, load shifting, usage flattening
  - energy management systems
    - incorporate prices & external circumstances
    - (de)activate appliances (heat pumps, fridge, battery chargers, ...)
  - remote meter reading
- Grid management
  - aggregating data (profiles, peaks, services, ...)
  - controlling grids and elements (topology, power quality, ...)
- Smart meters enable smart grids



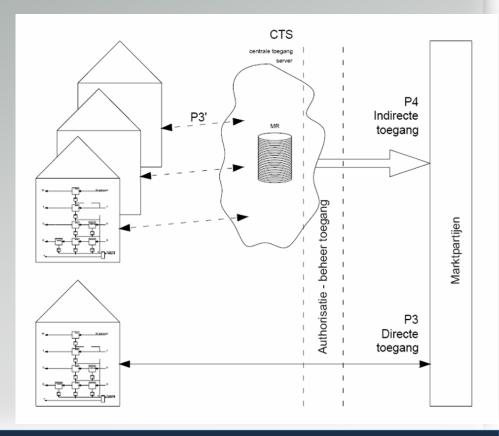


### Communication

#### Possible communication means:

- PLC: Power Line Carrier
  - + no extra cabling required
  - not available during certain power problems, less reliable than other comm. means, smallband
- wired over telephone / cable infrastructure
  - + very reliable
  - broadband when DSL or TV cable
  - requires phone connection or access to cable, short distances
- wireless mobile telephony and data (2G/3G)
  - smallband (2G) ⇔ + broadband (3G)
  - no good coverage in cellar, availability 3G < 100%</li>
- wireless: radio frequency (RF)
  - smallband, requires antenna infrastructure
  - + very reliable, good coverage






## Requirements / Architecture

- Small bandwidth sufficient for basic information
  - additional services require broadband

| transaction type   | time     | response      | #times/yr | #data         |
|--------------------|----------|---------------|-----------|---------------|
|                    | critical | (min/typ/max) |           | (min/typ/max) |
| command            | yes      | immediate     | 1         | 0.5 KiB       |
| store              |          | 5 min         |           | 1 KiB         |
| measurement        |          | 1 h           |           | 16 KiB        |
| registers          |          |               |           |               |
| send               | no       | immediate     | 13        | 1 KiB         |
| measurement        |          | 10 min        | (12+1)    | 32 KiB        |
| registers          |          | 2 h           |           | 16 MiB        |
| (periodically + on |          |               |           |               |
| demand)            |          |               |           |               |
| command            | yes      | immediate     | 1         | 0.5 KiB       |
| reduce load        |          | 5 min         |           | 1 KiB         |
|                    |          | 1 h           |           | 16 KiB        |
| adjust             | no       | immediate     | 2         | 0.5 KiB       |
| parameters         |          | 10 min        |           | 1 KiB         |
|                    |          | 2 h           |           | 16 KiB        |
| upgrade firmware   | no       | -             | 0,2       | 0.5 KiB       |
|                    |          |               |           | 1 KiB         |
|                    |          |               |           | 512 KiB       |
| send               | no       | immediate     | 0,2       | 0.5 KiB       |
| alarms             |          | 10 min        |           | 1 KiB         |
|                    |          | 2 h           |           | 16 KiB        |

Single (centralised) vs.
 multiple (distributed)
 access

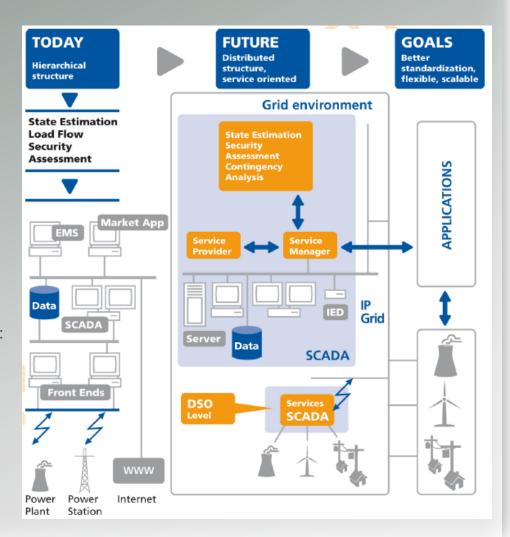




# Power, telecom and software: reliability and dependability (1)



#### Copper based energy infrastructure (electricity)


- Optimized topology
- Power electronic devices

#### Communications layer

- Requirements of speed, quality, reliability, dependability with costs
- Different communication technologies at the same time

#### Software layer

- Multiple software functions for normal operation: doing locally and independently the maximum number of functions, reporting/requesting from upper level minimum possible information necessary
- Network reconfiguration
- Self-healing procedures
- Fault management
- Forecasting, modeling & planning





# Power, telecom and software: reliability and dependability (2)



- Availability: fraction of time that the system is operational
- Reliability: probability to function correctly for specific time period
  - redundancy increases A and R
  - encoding & protocols enhance A and R
- Integrity: no undeserved changes
  - important for specific messages (data packets)
  - encoding can enhance integrity
- Confidentiality: no unauthorised disclosure
  - important for specific messages (data packets)
  - encryption can enhance confidentiality



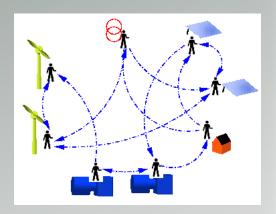
# Power, telecom and software: reliability and dependability (3)

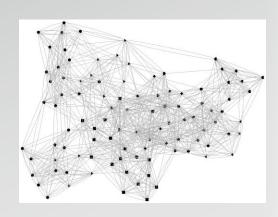


- electricity grid is robust
  - fully at transmission level
    - "N-1 security": functional with single failure
      - generator, transformer, line, controller, communication, ...
    - but also sometimes N-2, N-3, N-x, ...
  - often at distribution level
    - minimal, localized impact of failures
- only 2, 3, or + failures result in unavailability
  - also ICT architecture at least N-1, or N-x !!
    - including common cause failures
- interdependence ICT ←/→ power infrastructure






### Fault tolerant energy system


#### to deal with

- internal problems
  - physical faults in controllers or communication
- external dynamic environment
  - changing interconnection topology
  - bandwidth reduction



- in interconnections and resources
- in dynamic environment
  - resource discovery
  - overlay networks
- for quantitative & qualitative assessment
  - explicit fault and failure model
  - dependability, time & cost constraints

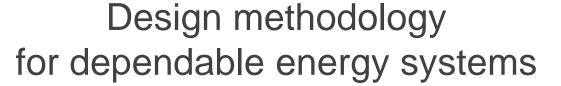











#### Accidental fault scenarios

- Network delays/packet loss
- → Slower convergence of 2<sup>nd</sup>-ary / 3<sup>rd</sup>-ary control loops
- Communication failure; soft-/hardware crash
- → Overlay network can manage dynamism, if available

#### Malicious fault scenarios

- Denial-of-service attacks → similar, not critical
- Intrusions on control PCs
  - Attacks on middleware level → critical
    - e.g. influence overlay topology
  - Attacks at application level → critical
    - e.g. tampering with 3<sup>rd</sup>-ary control (financial gain)
    - e.g. tampering with 2<sup>nd</sup>-ary control (voltage profile disturbance)







- explicit fault and failure models of energy infrastructure
- dependability modeling
  - reliability, safety, ...
  - fault prevention, ~tolerance, ~removal, ~prediction
- instantiation of modular middleware architecture
  - dependable communication & computation
  - in dynamic environments
- assessment of dependability, time & cost constraints
  - conceptual evaluation and fault injection
  - interdependencies on other critical infrastructures
    - energy, telecom, information & fault propagation







- Hybrid electric vehicles (HEV)
  - Additional electrical motor
  - Downsizing of internal combustion engine
  - No loss of performance
  - Reduction of exhaust gases
- Plug-in hybrid electric vehicle (PHEV)
  - HEV
  - Battery charging
    - On-board
    - Plugging into a standard electric outlet
  - · Limited range in electric only mode
- Battery electric vehicle (BEV)
  - Electrical motor only
  - Charging: only plugging into a standard outlet
  - Limited range





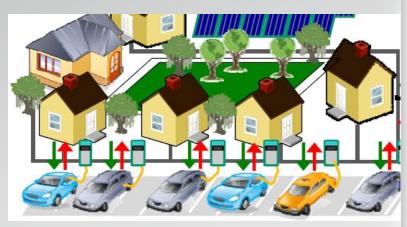


- Advantages of EV for society as a whole:
  - Reduction of polluting and GHG emissions
  - Increase in energy usage efficiency
  - Maximization of number and variety of primary sources of energy, including RES
  - Reduction of Europe and member states foreign energy dependency
  - Reduction of noise pollution in urban areas
- But:
  - What is the impact on the electric power system?
  - Market models forthcoming infrastructure needs?





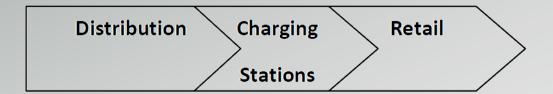
- Impact on the electric power system
  - Load increase
    - +/- 3500 kWh per car annually
    - Doubling household energy consumption
    - Impact on distribution grid
      - Voltage levels/deviations
      - Line losses
      - Transformer investments
    - Impact on power generation
      - Additional generation capacity
      - Creation of new demand peaks




Importance of Smartness of EV integration






- Impact on the electric power system
  - Smart integration
    - Flexible load
      - Coordinated charging
      - Integrating variable/unpredictable RES: central or distributed
      - Integrating inflexible generation facilities
    - New storage facility
      - Bidirectional power flows
      - Arbitrage between different hours
    - Grid support
      - Delivering ancillary services
        - » Frequency regulation
        - » Voltage regulation
        - » Load leveling
      - Large availability: 90 % not driving







- Market models forthcoming infrastructure needs
  - Market for charging infrastructure
  - Services provided by the infrastructure
- Depending on locations for EV infrastructure
  - Public/private areas public/private property
  - Fast charging locations
- Different market structures







- Integrated infrastructure
- Distribution Charging Retail
  Stations

- Into DSO's assets
- Socialized cost recovery (tariffs)
- Separated infrastructure

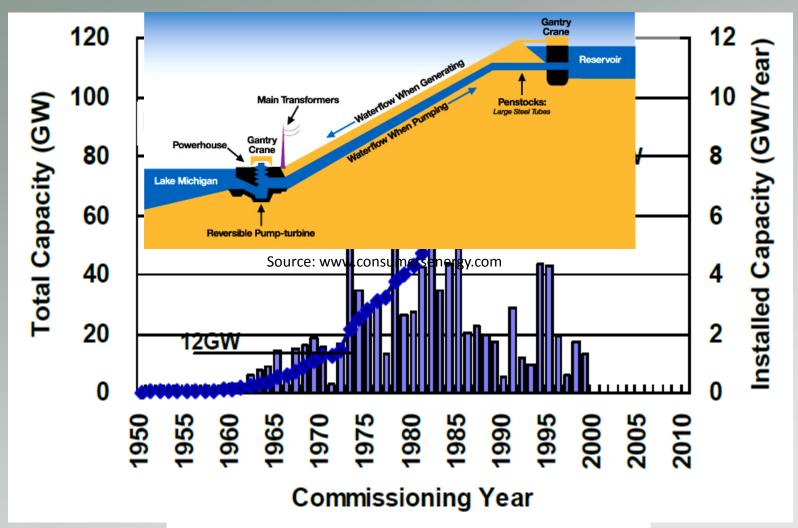


Stations

- Separate, independent, but regulated operator
- New billing and authorization system
- Independent e-mobility / spot operator owned stations
  - Private operator
    - Retailer
    - Parking spot owner
  - Roaming / reselling electricity



# Impact of and need for storage (electricity and heat)

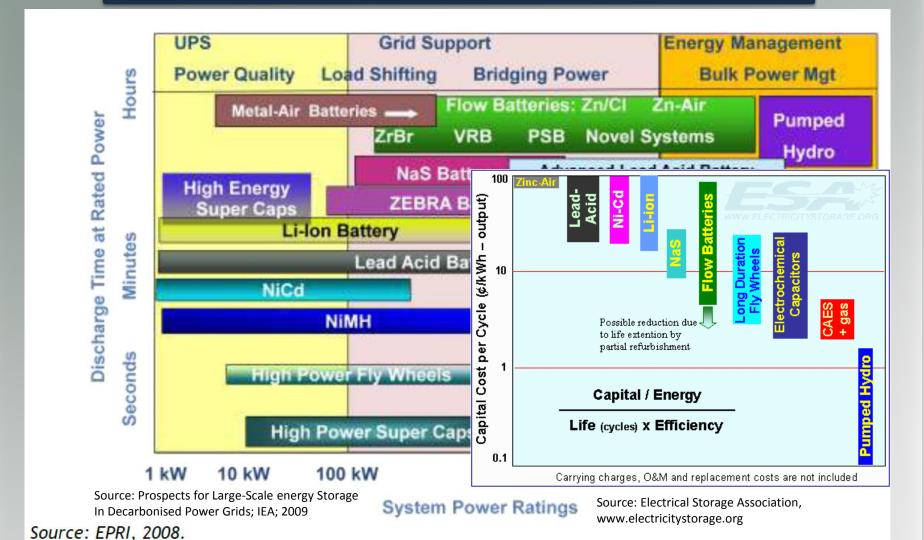



- Large scale integration Renewable Energy Resources
  - Curtailing?
  - Energy Storage
- Grid Services
  - Peak shaving
  - Voltage control
  - PF correction
  - Energy arbitrage





## Pumped Storage

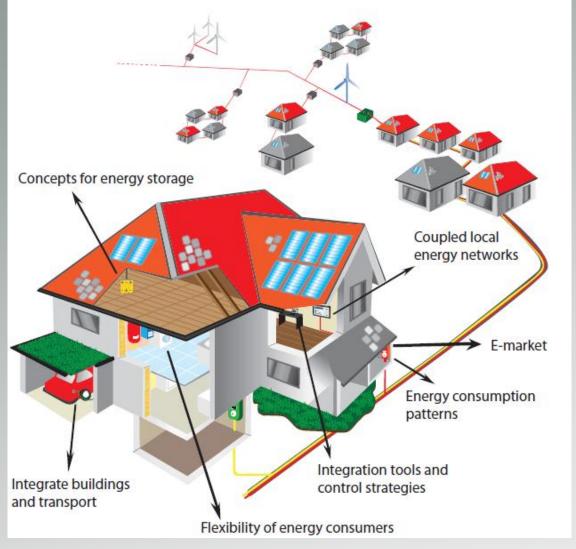



Source: IEA, based on data from Mc COY report 2008, (2008).



# Electricity storage systems and applications






© K.U.Leuven - ESAT/Electa





## DER, storage, networks



Source: KULeuven - ELECTA





## Thermal storage

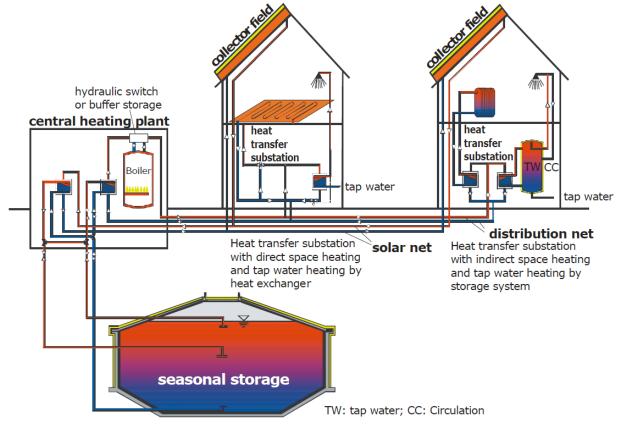



Figure 1: Central solar heating plant with seasonal storage (CSHPSS)

hot-water heat store

gravel-water heat store

Source: ISES Solar World Congress 2003, Seasonal Thermal Energy Storage In Germany, T. Schmidt, D. Mangold, H. Müller-Steinhagen





## Green cities



Source: Lava Architects





## Thank you for your attention!





<a href="http://www.smartgrids.eu">http://www.smartgrids.eu</a>
<a href="http://www.esat.kuleuven.be/electa">http://www.esat.kuleuven.be/electa</a>
<a href="mailto:ronnie.belmans@esat.kuleuven.be">ronnie.belmans@esat.kuleuven.be</a>