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1. Introduction 

 

 

1 Locomotion 

 

 
1.1 Introduction 

 
A mobile robot needs locomotion mechanisms that enable it to move 

unbounded through- out its environment. But there are a large variety of 

possible ways to move, and so the selec- tion of a robot’s approach to 

locomotion is an important aspect of mobile robot design. In the 

laboratory, there are research robots that can walk, jump, run, slide, 

skate, swim, fly, and, of course, roll. Most of these locomotion 

mechanisms have been inspired by their bio- logical counterparts (see 

figure 2.1). 

There is, however, one exception: the actively powered wheel is a 

human invention that achieves extremely high efficiency on flat ground. 

This mechanism is not completely for- eign to biological systems. Our 

bipedal walking system can be approximated by a rolling polygon, with 

sides equal in length d to the span of the step (figure 2.2). As the step 

size decreases, the polygon approaches a circle or wheel. But nature 

did not develop a fully rotating, actively powered joint, which is the 

technology necessary for wheeled locomo- tion. 

Biological systems succeed in moving through a wide variety of 

harsh environments. Therefore it can be desirable to copy their 

selection of locomotion mechanisms. However, replicating nature in 

this regard is extremely difficult for several reasons. To begin with, 
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mechanical complexity is easily achieved in biological systems through 

structural replica- tion. Cell division, in combination with specialization, 

can readily produce a millipede with several hundred legs and several 

tens of thousands of individually sensed cilia. In man- made 

structures, each part must be fabricated individually, and so no such 

economies of scale exist. Additionally, the cell is a microscopic building 

block that enables extreme min- iaturization. With very small size and 

weight, insects achieve a level of robustness that we have not been 

able to match with human fabrication techniques. Finally, the 

biological energy storage system and the muscular and hydraulic 

activation systems used by large ani- mals and insects achieve torque, 

response time, and conversion efficiencies that far exceed similarly 

scaled man-made systems. 
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Figure 2.1 

Locomotion mechanisms used in biological systems. 

 
 

Owing to these limitations, mobile robots generally locomote either 

using wheeled mechanisms, a well-known human technology for 

vehicles, or using a small number of articulated legs, the simplest of 

the biological approaches to locomotion (see figure 2.2). 

In general, legged locomotion requires higher degrees of freedom 

and therefore greater mechanical complexity than wheeled 

locomotion. Wheels, in addition to being simple, are extremely well 
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suited to flat ground. As figure 2.3 depicts, on flat surfaces wheeled 

loco- motion is one to two orders of magnitude more efficient than 

legged locomotion. The rail- way is ideally engineered for wheeled 

locomotion because rolling friction is minimized on a hard and flat steel 

surface. But as the surface becomes soft, wheeled locomotion accumu- 

lates inefficiencies due to rolling friction whereas legged locomotion 

suffers much less because it consists only of point contacts with the 

ground. This is demonstrated in figure 
2.3 by the dramatic loss of efficiency in the case of a tire on soft ground. 
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Figure 2.2 

A biped walking system can be approximated by a rolling polygon, with sides equal in length d to the 

span of the step. As the step size decreases, the polygon approaches a circle or wheel with the radius 

l. 
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Figure 2.3 

Specific power versus attainable speed of various locomotion mechanisms [33].  
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Figure 2.4 

RoboTrac, a hybrid wheel-leg vehicle for rough terrain [130]. 

 

 

In effect, the efficiency of wheeled locomotion depends greatly on 

environmental qual- ities, particularly the flatness and hardness of the 

ground, while the efficiency of legged locomotion depends on the leg 

mass and body mass, both of which the robot must support at various 

points in a legged gait. 

It is understandable therefore that nature favors legged locomotion, 

since locomotion systems in nature must operate on rough and 

unstructured terrain. For example, in the case of insects in a forest the 

vertical variation in ground height is often an order of magnitude 

greater than the total height of the insect. By the same token, the 

human environment fre- quently consists of engineered, smooth 

surfaces, both indoors and outdoors. Therefore, it is also 

understandable that virtually all industrial applications of mobile 

robotics utilize some form of wheeled locomotion. Recently, for more 

natural outdoor environments, there has been some progress toward 

hybrid and legged industrial robots such as the forestry robot shown 

in figure 2.4. 

In the section 2.1.1, we present general considerations that concern 
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all forms of mobile robot locomotion. Following this, in sections 2.2 and 

2.3, we present overviews of legged locomotion and wheeled 

locomotion techniques for mobile robots. 

 

1.1.1 Key issues for locomotion 

Locomotion is the complement of manipulation. In manipulation, the 

robot arm is fixed but moves objects in the workspace by imparting 

force to them. In locomotion, the environ- ment is fixed and the robot 

moves by imparting force to the environment. In both cases, the 

scientific basis is the study of actuators that generate interaction 

forces, and mechanisms 
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that implement desired kinematic and dynamic properties. 

Locomotion and manipulation thus share the same core issues of 

stability, contact characteristics, and environmental type: 

• stability 

- number and geometry of contact points 

- center of gravity 

- static/dynamic stability 

- inclination of terrain 

• characteristics of contact 

- contact point/path size and shape 

- angle of contact 

- friction 

• type of environment 

- structure 

- medium, (e.g. water, air, soft or hard ground) 

A theoretical analysis of locomotion begins with mechanics and 

physics. From this start- ing point, we can formally define and analyze 

all manner of mobile robot locomotion sys- tems. However, this book 

focuses on the mobile robot navigation problem, particularly stressing 

perception, localization, and cognition. Thus we will not delve deeply 

into the physical basis of locomotion. Nevertheless, the two remaining 

sections in this chapter present overviews of issues in legged 

locomotion [33] and wheeled locomotion. Then, chapter 3 presents a 

more detailed analysis of the kinematics and control of wheeled mobile 

robots. 

 

1.2 Legged Mobile Robots 
 

Legged locomotion is characterized by a series of point contacts 

between the robot and the ground. The key advantages include 

adaptability and maneuverability in rough terrain. Because only a set 

of point contacts is required, the quality of the ground between those 

points does not matter so long as the robot can maintain adequate 

ground clearance. In addi- tion, a walking robot is capable of crossing a 

hole or chasm so long as its reach exceeds the width of the hole. A final 
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advantage of legged locomotion is the potential to manipulate objects 

in the environment with great skill. An excellent insect example, the 

dung beetle, is capable of rolling a ball while locomoting by way of its 

dexterous front legs. 

The main disadvantages of legged locomotion include power and 

mechanical complex- ity. The leg, which may include several degrees 

of freedom, must be capable of sustaining part of the robot’s total 

weight, and in many robots must be capable of lifting and lowering the 

robot. Additionally, high maneuverability will only be achieved if the 

legs have a suf- ficient number of degrees of freedom to impart forces 

in a number of different directions. 
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Figure 2.5 

Arrangement of the legs of various animals. 

 
 

 

1.2.1 Leg configurations and stability 

Because legged robots are biologically inspired, it is instructive to 

examine biologically successful legged systems. A number of different 

leg configurations have been successful in a variety of organisms 

(figure 2.5). Large animals, such as mammals and reptiles, have four 

legs, whereas insects have six or more legs. In some mammals, the 

ability to walk on only two legs has been perfected. Especially in the 

case of humans, balance has progressed 
to the point that we can even jump with one leg1. This exceptional 
maneuverability comes 

at a price: much more complex active control to maintain balance. 

In contrast, a creature with three legs can exhibit a static, stable pose 

provided that it can ensure that its center of gravity is within the tripod 

of ground contact. Static stability, dem- onstrated by a three-legged 

stool, means that balance is maintained with no need for motion. A 

small deviation from stability (e.g., gently pushing the stool) is 

passively cor- rected toward the stable pose when the upsetting force 

stops. 

But a robot must be able to lift its legs in order to walk. In order to 

achieve static walk- ing, a robot must have at least six legs. In such a 

configuration, it is possible to design a gait in which a statically stable 

tripod of legs is in contact with the ground at all times (figure 2.8). 
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Insects and spiders are immediately able to walk when born. For 

them, the problem of balance during walking is relatively simple. 

Mammals, with four legs, cannot achieve static walking, but are able to 

stand easily on four legs. Fauns, for example, spend several minutes 

attempting to stand before they are able to do so, then spend several 

more minutes learning to walk without falling. Humans, with two legs, 

cannot even stand in one place with static stability. Infants require 

months to stand and walk, and even longer to learn to jump, run, and 

stand on one leg. 
 

1. In child development, one of the tests used to determine if the child is acquiring advanced 

loco- motion skills is the ability to jump on one leg. 



Locomotion 25 
 

25 

 

 
 

hip abduction angle () abduction-adduction 

 knee flexion angle () 

 

 

lift 

main drive 

 
 

 
upper thigh link 

hip flexion angle () lower thigh link  

 
shank link 

 

 
Figure 2.6 

Two examples of legs with three degrees of freedom. 

 

 

There is also the potential for great variety in the complexity of each 

individual leg. Once again, the biological world provides ample 

examples at both extremes. For instance, in the case of the caterpillar, 

each leg is extended using hydraulic pressure by constricting the body 

cavity and forcing an increase in pressure, and each leg is retracted 

longitudinally by relaxing the hydraulic pressure, then activating a 

single tensile muscle that pulls the leg in toward the body. Each leg has 

only a single degree of freedom, which is oriented longi- tudinally along 

the leg. Forward locomotion depends on the hydraulic pressure in the 

body, which extends the distance between pairs of legs. The caterpillar 

leg is therefore mechani- cally very simple, using a minimal number of 

extrinsic muscles to achieve complex overall locomotion. 

At the other extreme, the human leg has more than seven major 

degrees of freedom, combined with further actuation at the toes. More 

than fifteen muscle groups actuate eight complex joints. 

In the case of legged mobile robots, a minimum of two degrees of 

freedom is generally required to move a leg forward by lifting the leg 

and swinging it forward. More common is the addition of a third degree 
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of freedom for more complex maneuvers, resulting in legs such as 

those shown in figure 2.6. Recent successes in the creation of bipedal 

walking robots have added a fourth degree of freedom at the ankle 

joint. The ankle enables more consistent ground contact by actuating 

the pose of the sole of the foot. 

In general, adding degrees of freedom to a robot leg increases the 

maneuverability of the robot, both augmenting the range of terrains on 

which it can travel and the ability of the robot to travel with a variety of 

gaits. The primary disadvantages of additional joints and actuators 

are, of course, energy, control, and mass. Additional actuators require 

energy and control, and they also add to leg mass, further increasing 

power and load requirements on existing actuators. 
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changeover walking galloping 

 

Figure 2.7 

Two gaits with four legs. Because this robot has fewer than six legs, static walking is not generally 

possible. 

 

 

In the case of a multilegged mobile robot, there is the issue of leg 

coordination for loco- motion, or gait control. The number of possible 

gaits depends on the number of legs [33]. The gait is a sequence of lift 

and release events for the individual legs. For a mobile robot with k 

legs, the total number of possible events N for a walking machine is 
 

N = (2k – 1)! (2.1) 

 

free fly 
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For a biped walker k = 2 legs, the number of possible events N is 
 

N = (2k – 1)! = 3! = 3  2  1 = 
6 

(2.2) 
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The six different events are 

1. lift right leg; 

2. lift left leg; 

3. release right leg; 

4. release left leg; 

5. lift both legs together; 

6. release both legs together. 

Of course, this quickly grows quite large. For example, a robot with 

six legs has far more gaits theoretically: 
 

N = 11! = 
39916800 

(2.3) 

 

Figures 2.7 and 2.8 depict several four-legged gaits and the static six-
legged tripod gait. 

 
1.2.2 Examples of legged robot locomotion 

Although there are no high-volume industrial applications to date, 

legged locomotion is an important area of long-term research. Several 

interesting designs are presented below, beginning with the one-

legged robot and finishing with six-legged robots. For a very good 

overview of climbing and walking robots, see 

http://www.uwe.ac.uk/clawar/. 

 

1.2.2.1 One leg 

The minimum number of legs a legged robot can have is, of course, 

one. Minimizing the number of legs is beneficial for several reasons. 

Body mass is particularly important to walking machines, and the 

single leg minimizes cumulative leg mass. Leg coordination is required 

when a robot has several legs, but with one leg no such coordination 

is needed. Perhaps most importantly, the one-legged robot maximizes 

the basic advantage of legged locomotion: legs have single points of 

contact with the ground in lieu of an entire track, as with wheels. A 

http://www.uwe.ac.uk/clawar/
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single-legged robot requires only a sequence of single contacts, 

making it amenable to the roughest terrain. Furthermore, a hopping 

robot can dynamically cross a gap that is larger than its stride by taking 

a running start, whereas a multilegged walking robot that cannot run is 

limited to crossing gaps that are as large as its reach. 

The major challenge in creating a single-legged robot is balance. 

For a robot with one leg, static walking is not only impossible but static 

stability when stationary is also impos- sible. The robot must actively 

balance itself by either changing its center of gravity or by imparting 

corrective forces. Thus, the successful single-legged robot must be 

dynamically stable. 
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Figure 2.8 

Static walking with six legs. A tripod formed by three legs always exists. 

 
 

Figure 2.9 shows the Raibert hopper [28, 124], one of the most well-

known single- legged hopping robots created. This robot makes 

continuous corrections to body attitude and to robot velocity by 

adjusting the leg angle with respect to the body. The actuation is 

hydraulic, including high-power longitudinal extension of the leg during 

stance to hop back into the air. Although powerful, these actuators 

require a large, off-board hydraulic pump to be connected to the robot 

at all times. 

Figure 2.10 shows a more energy-efficient design developed more 

recently [46]. Instead of supplying power by means of an off-board 

hydraulic pump, the bow leg hopper is designed to capture the kinetic 

energy of the robot as it lands, using an efficient bow spring leg. This 

spring returns approximately 85% of the energy, meaning that stable 
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hopping requires only the addition of 15% of the required energy on 

each hop. This robot, which is constrained along one axis by a boom, 

has demonstrated continuous hopping for 20 minutes using a single set 

of batteries carried on board the robot. As with the Raibert hopper, the 

bow leg hopper controls velocity by changing the angle of the leg to 

the body at the hip joint. 
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Figure 2.9 

The Raibert hopper [28, 124]. Image courtesy of the LegLab and Marc Raibert. © 1983. 

 
 
 

 

Figure 2.10 

The 2D single bow leg hopper [46]. Image courtesy of H. Benjamin Brown and Garth Zeglin, CMU.  
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Specifications: 

Weight: 7 kg 
Height: 58 cm 
Neck DOF: 4 
Body DOF: 2 
Arm DOF: 2 x 5 
Legs DOF: 2 x 
6 Five-finger Hands 

Figure 2.11 

The Sony SDR-4X II, © 2003 Sony Corporation. 

 

 
The paper of Ringrose [125] demonstrates the very important duality 

of mechanics and controls as applied to a single-legged hopping 

machine. Often clever mechanical design can perform the same 

operations as complex active control circuitry. In this robot, the phys- 

ical shape of the foot is exactly the right curve so that when the robot 

lands without being perfectly vertical, the proper corrective force is 

provided from the impact, making the robot vertical by the next landing. 

This robot is dynamically stable, and is furthermore passive. The 

correction is provided by physical interactions between the robot and its 

environment, with no computer or any active control in the loop. 

 

1.2.2.2 Two legs (biped) 

A variety of successful bipedal robots have been demonstrated over the 

past ten years. Two legged robots have been shown to run, jump, 

travel up and down stairways, and even do aerial tricks such as 
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somersaults. In the commercial sector, both Honda and Sony have 

made significant advances over the past decade that have enabled 

highly capable bipedal robots. Both companies designed small, 

powered joints that achieve power-to-weight per- formance unheard of 

in commercially available servomotors. These new “intelligent” servos 

provide not only strong actuation but also compliant actuation by 

means of torque sensing and closed-loop control. 
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Specifications: 

Maximum speed: 2 
km/h Autonomy:
 15 
min 
Weight: 210 kg 
Height: 1.82 m 
Leg DOF: 2 x 6 
Arm DOF: 2 x 7 

 

Figure 2.12 

The humanoid robot P2 from Honda, Japan. © Honda Motor Corporation. 

 
 

The Sony Dream Robot, model SDR-4X II, is shown in figure 2.11. 

This current model is the result of research begun in 1997 with the basic 

objective of motion entertainment and communication entertainment 

(i.e., dancing and singing). This robot with thirty-eight degrees of 

freedom has seven microphones for fine localization of sound, image-

based person recognition, on-board miniature stereo depth-map 

reconstruction, and limited speech recognition. Given the goal of fluid 

and entertaining motion, Sony spent consider- able effort designing a 

motion prototyping application system to enable their engineers to 

script dances in a straightforward manner. Note that the SDR-4X II is 

relatively small, standing at 58 cm and weighing only 6.5 kg. 

The Honda humanoid project has a significant history but, again, 

has tackled the very important engineering challenge of actuation. 

Figure 2.12 shows model P2, which is an immediate predecessor to 

the most recent Asimo model (advanced step in innovative mobility). 
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Note from this picture that the Honda humanoid is much larger than 

the SDR- 4X at 120 cm tall and 52 kg. This enables practical mobility 

in the human world of stairs and ledges while maintaining a 

nonthreatening size and posture. Perhaps the first robot to famously 

demonstrate biomimetic bipedal stair climbing and descending, these 

Honda humanoid series robots are being designed not for 

entertainment purposes but as human aids throughout society. Honda 

refers, for instance, to the height of Asimo as the minimum height which 

enables it to nonetheless manage operation of the human world, for 

instance, control of light switches. 



Locomotion 38 
 

38 

 

 
 
 
 
 
 
 
 
 

 

Specifications: 

Weight: 131 [kg] 
Height: 1.88 [m] 

DOF in total: 43 
Lower Limbs: 2 x 6 

Trunk: 3 
Arms: 2 x 10 
Neck: 4 
Eyes: 2 x 2 

Figure 2.13 

The humanoid robot WABIAN-RIII at Waseda University in Japan [75]. Image courtesy of Atsuo 

Takanishi, Waseda University. 

 
 

An important feature of bipedal robots is their anthropomorphic 

shape. They can be built to have the same approximate dimensions as 

humans, and this makes them excellent vehi- cles for research in 

human-robot interaction. WABIAN is a robot built at Waseda Univer- 

sities Japan (figure 2.13) for just such research [75]. WABIAN is 

designed to emulate human motion, and is even designed to dance 

like a human. 

Bipedal robots can only be statically stable within some limits, and so 

robots such as P2 and WABIAN generally must perform continuous 

balance-correcting servoing even when standing still. Furthermore, 

each leg must have sufficient capacity to support the full weight of the 

robot. In the case of four-legged robots, the balance problem is 

facilitated along with the load requirements of each leg. An elegant 

design of a biped robot is the Spring Fla- mingo of MIT (figure 2.14). 
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This robot inserts springs in series with the leg actuators to achieve a 

more elastic gait. Combined with “kneecaps” that limit knee joint angles, 

the Fla- mingo achieves surprisingly biomimetic motion. 

 
1.2.2.3 Four legs (quadruped) 

Although standing still on four legs is passively stable, walking 

remains challenging because to remain stable the robot’s center of 
gravity must be actively shifted during the 
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Figure 2.14 

The Spring Flamingo developed at MIT [123]. Image courtesy of Jerry Pratt, MIT Leg Laboratory.  

 
 

gait. Sony recently invested several million dollars to develop a four-

legged robot called AIBO (figure 2.15). To create this robot, Sony 

produced both a new robot operating system that is near real-time and 

new geared servomotors that are of sufficiently high torque to sup- port 

the robot, yet back drivable for safety. In addition to developing custom 

motors and software, Sony incorporated a color vision system that 

enables AIBO to chase a brightly colored ball. The robot is able to 

function for at most one hour before requiring recharging. Early sales of 

the robot have been very strong, with more than 60,000 units sold in the 

first year. Nevertheless, the number of motors and the technology 

investment behind this robot dog resulted in a very high price of 

approximately $1500. 

Four-legged robots have the potential to serve as effective artifacts 

for research in human-robot interaction (figure 2.16). Humans can treat 

the Sony robot, for example, as a pet and might develop an emotional 

relationship similar to that between man and dog. Fur- thermore, Sony 

has designed AIBO’s walking style and general behavior to emulate 

learn- ing and maturation, resulting in dynamic behavior over time that 
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is more interesting for the owner who can track the changing behavior. 

As the challenges of high energy storage and motor technology are 

solved, it is likely that quadruped robots much more capable than 

AIBO will become common throughout the human environment. 

 
1.2.2.4 Six legs (hexapod) 

Six-legged configurations have been extremely popular in mobile 

robotics because of their static stability during walking, thus reducing 

the control complexity (figures 2.17 and 1.3). 
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Figure 2.15 

AIBO, the artificial dog from Sony, Japan. 

 
 
 
 
 
 

 
1 Stereo microphone: Allows AIBO to pick up 

surrounding sounds. 
2 Head sensor: Senses when a person taps 

or pets AIBO on the head. 
3 Mode indicator: Shows AIBO’s operation 

mode. 
4 Eye lights: These light up in blue-green or 

red to indicate AIBO’s emotional state. 
5 Color camera: Allows AIBO to search for 

objects and recognize them by color and 
movement. 

6 Speaker: Emits various musical tones and 
sound effects. 

7 Chin sensor: Senses when a person touches 
AIBO on the chin. 

8 Pause button: Press to activate AIBO or to 
pause AIBO. 

9 Chest light: Gives information about the 
status of the robot. 

10 Paw sensors: Located on the bottom of 
each paw. 

11 Tail light: Lights up blue or orange to show 
AIBO’s emotional state. 

12 Back sensor: Senses when a person touches 
AIBO on the back. 

 
 

In most cases, each leg has three degrees of freedom, including hip 

flexion, knee flexion, and hip abduction (see figure 2.6). Genghis is a 

commercially available hobby robot that has six legs, each of which 

has two degrees of freedom provided by hobby servos (figure 2.18). 

Such a robot, which consists only of hip flexion and hip abduction, has 

less maneu- verability in rough terrain but performs quite well on flat 

ground. Because it consists of a straightforward arrangement of 

servomotors and straight legs, such robots can be readily built by a 

robot hobbyist. 

Insects, which are arguably the most successful locomoting 
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creatures on earth, excel at traversing all forms of terrain with six legs, 

even upside down. Currently, the gap between the capabilities of six-

legged insects and artificial six-legged robots is still quite large. 

Interestingly, this is not due to a lack of sufficient numbers of degrees 

of freedom on the robots. Rather, insects combine a small number of 

active degrees of freedom with passive 
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Specifications: 

Weight:1 9 kg 
Height: 0.25 m 
DOF: 4 x 3 

 
 

Figure 2.16 

Titan VIII, a quadruped robot developed at Tokyo Institute of Technology. 

(http://mozu.mes.titech.ac.jp/research/walk/). © Tokyo Institute of 

Technology. 

 
 
 
 
 
 
 

Specifications: 

Maximum speed:
 0.5 
m/s Weight:1 6 kg 
Height: 0.3 m 
Length: 0.7 m 
No. of legs: 6 
DOF in total: 6 x 
3 Power 
consumption:10 W 

 
 

Figure 2.17 

Lauron II, a hexapod platform developed at the University of Karlsruhe, Germany. 

© University of Karlsruhe. 

http://mozu.mes.titech.ac.jp/research/walk/)
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Figure 2.18 

Genghis, one of the most famous walking robots from MIT, uses hobby servomotors as its actuators 

(http://www.ai.mit.edu/projects/genghis). © MIT AI Lab. 

 
 

structures, such as microscopic barbs and textured pads, that increase 

the gripping strength of each leg significantly. Robotic research into 

such passive tip structures has only recently begun. For example, a 

research group is attempting to re-create the complete mechanical 

function of the cockroach leg [65]. 

It is clear from the above examples that legged robots have much 

progress to make before they are competitive with their biological 

equivalents. Nevertheless, significant gains have been realized 

recently, primarily due to advances in motor design. Creating 

actuation systems that approach the efficiency of animal muscles 

remains far from the reach of robotics, as does energy storage with 

the energy densities found in organic life forms. 

 

2.3 Wheeled Mobile Robots 

 
The wheel has been by far the most popular locomotion mechanism in 

mobile robotics and in man-made vehicles in general. It can achieve 

very good efficiencies, as demonstrated in figure 2.3, and does so with 

a relatively simple mechanical implementation. 

In addition, balance is not usually a research problem in wheeled 

robot designs, because wheeled robots are almost always designed 

http://www.ai.mit.edu/projects/genghis)
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so that all wheels are in ground contact at all times. Thus, three wheels 

are sufficient to guarantee stable balance, although, as we shall see 

below, two-wheeled robots can also be stable. When more than three 

wheels are used, a suspension system is required to allow all wheels 

to maintain ground contact when the robot encounters uneven terrain. 

Instead of worrying about balance, wheeled robot research tends to 

focus on the prob- lems of traction and stability, maneuverability, and 

control: can the robot wheels provide 
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a) b) c) d) 

Swedish 90° Swedish 45° 

 

 

     

 

  

 

 

 

 

Figure 2.19 

The four basic wheel types. (a) Standard wheel: two degrees of freedom; rotation around the (motor- 

ized) wheel axle and the contact point.(b) castor wheel: two degrees of freedom; rotation around 

an offset steering joint. (c) Swedish wheel: three degrees of freedom; rotation around the 

(motorized) wheel axle, around the rollers, and around the contact point. (d) Ball or spherical 

wheel: realization technically difficult. 

 
 

sufficient traction and stability for the robot to cover all of the desired 

terrain, and does the robot’s wheeled configuration enable sufficient 

control over the velocity of the robot? 

 
2.3.1 Wheeled locomotion: the design space 

As we shall see, there is a very large space of possible wheel 

configurations when one con- siders possible techniques for mobile 

robot locomotion. We begin by discussing the wheel in detail, as there 

are a number of different wheel types with specific strengths and weak- 

nesses. Then, we examine complete wheel configurations that deliver 

particular forms of locomotion for a mobile robot. 

 

2.3.1.1 Wheel design 

There are four major wheel classes, as shown in figure 2.19. They 

differ widely in their kinematics, and therefore the choice of wheel type 

has a large effect on the overall kinemat- ics of the mobile robot. The 
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standard wheel and the castor wheel have a primary axis of rotation 

and are thus highly directional. To move in a different direction, the 

wheel must be steered first along a vertical axis. The key difference 

between these two wheels is that the standard wheel can accomplish 

this steering motion with no side effects, as the center of rotation 

passes through the contact patch with the ground, whereas the castor 

wheel rotates around an offset axis, causing a force to be imparted to 

the robot chassis during steering. 
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Figure 2.20 

Navlab I, the first autonomous highway vehicle that steers and controls the throttle using vision 

and radar sensors [61]. Developed at CMU. 

 

 
The Swedish wheel and the spherical wheel are both designs that are 

less constrained by directionality than the conventional standard 

wheel. The Swedish wheel functions as a normal wheel, but provides 

low resistance in another direction as well, sometimes perpen- dicular 

to the conventional direction, as in the Swedish 90, and sometimes at 

an intermedi- ate angle, as in the Swedish 45. The small rollers 

attached around the circumference of the wheel are passive and the 

wheel’s primary axis serves as the only actively powered joint. The key 

advantage of this design is that, although the wheel rotation is powered 

only along the one principal axis (through the axle), the wheel can 

kinematically move with very little friction along many possible 

trajectories, not just forward and backward. 

The spherical wheel is a truly omnidirectional wheel, often designed 

so that it may be actively powered to spin along any direction. One 

mechanism for implementing this spher- ical design imitates the 

computer mouse, providing actively powered rollers that rest against 

the top surface of the sphere and impart rotational force. 

Regardless of what wheel is used, in robots designed for all-terrain 
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environments and in robots with more than three wheels, a suspension 

system is normally required to maintain wheel contact with the ground. 

One of the simplest approaches to suspension is to design flexibility 

into the wheel itself. For instance, in the case of some four-wheeled 

indoor robots that use castor wheels, manufacturers have applied a 

deformable tire of soft rubber to the wheel to create a primitive 

suspension. Of course, this limited solution cannot compete with a 

sophisticated suspension system in applications where the robot 

needs a more dynamic suspension for significantly non flat terrain. 
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2.3.1.2 Wheel geometry 

The choice of wheel types for a mobile robot is strongly linked to the 

choice of wheel arrangement, or wheel geometry. The mobile robot 

designer must consider these two issues simultaneously when 

designing the locomoting mechanism of a wheeled robot. Why do 

wheel type and wheel geometry matter? Three fundamental 

characteristics of a robot are governed by these choices: 

maneuverability, controllability, and stability. 

Unlike automobiles, which are largely designed for a highly 

standardized environment (the road network), mobile robots are 

designed for applications in a wide variety of situa- tions. Automobiles 

all share similar wheel configurations because there is one region in 

the design space that maximizes maneuverability, controllability, and 

stability for their stan- dard environment: the paved roadway. 

However, there is no single wheel configuration that maximizes these 

qualities for the variety of environments faced by different mobile 

robots. So you will see great variety in the wheel configurations of 

mobile robots. In fact, few robots use the Ackerman wheel 

configuration of the automobile because of its poor maneu- verability, 

with the exception of mobile robots designed for the road system 

(figure 2.20). Table 2.1 gives an overview of wheel configurations 

ordered by the number of wheels. 

This table shows both the selection of particular wheel types and their 

geometric configu- ration on the robot chassis. Note that some of the 

configurations shown are of little use in mobile robot applications. For 

instance, the two-wheeled bicycle arrangement has moder- ate 

maneuverability and poor controllability. Like a single-legged hopping 

machine, it can never stand still. Nevertheless, this table provides an 

indication of the large variety of wheel configurations that are possible 

in mobile robot design. 

The number of variations in table 2.1 is quite large. However, there 

are important trends and groupings that can aid in comprehending the 

advantages and disadvantages of each configuration. Below, we 

identify some of the key trade-offs in terms of the three issues we 

identified earlier: stability, maneuverability, and controllability. 
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2.3.1.3 Stability 

Surprisingly, the minimum number of wheels required for static stability 

is two. As shown above, a two-wheel differential-drive robot can 

achieve static stability if the center of mass is below the wheel axle. Cye 

is a commercial mobile robot that uses this wheel configura- tion (figure 

2.21). 

However, under ordinary circumstances such a solution requires 

wheel diameters that are impractically large. Dynamics can also cause 

a two-wheeled robot to strike the floor with a third point of contact, for 

instance, with sufficiently high motor torques from stand- still. 

Conventionally, static stability requires a minimum of three wheels, 

with the addi- tional caveat that the center of gravity must be contained 

within the triangle formed by the ground contact points of the wheels. 

Stability can be further improved by adding more wheels, although 

once the number of contact points exceeds three, the hyperstatic nature 

of the geometry will require some form of flexible suspension on 

uneven terrain. 
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Table 2.1 

Wheel configurations for rolling vehicles 

 

# of 
wheels 

Arrangement Description Typical examples 

2  

 

One steering wheel in the 

front, one traction wheel in 

the rear 

Bicycle, motorcycle 

 

 

Two-wheel differential drive 

with the center of mass 

(COM) below the axle 

Cye personal robot 

3  

 

Two-wheel centered 

differen- tial drive with a 

third point of contact 

Nomad Scout, 

smartRob EPFL 

 

 

Two independently driven 

wheels in the rear/front, 1 

unpowered omnidirectional 

wheel in the front/rear 

Many indoor robots, 

including the EPFL 

robots Pygmalion and 

Alice 

 

 

Two connected traction 

wheels (differential) in rear, 

1 steered free wheel in front 

Piaggio minitrucks 

 

 

Two free wheels in rear, 1 

steered traction wheel in 

front 

Neptune (Carnegie 

Mellon University), 

Hero-1 

 

 

Three motorized Swedish or 

spherical wheels arranged in 

a triangle; omnidirectional 

move- ment is possible 

Stanford wheel 

Tribolo EPFL, 

Palm Pilot Robot Kit 

(CMU) 

 

 

Three synchronously 

motorized and steered 

wheels; the orienta- tion is 

not controllable 

“Synchro drive” 
Denning MRV-2, 

Geor- gia Institute of 

Technol- 

ogy, I-Robot B24, 

Nomad 200 
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Table 2.1 

Wheel configurations for rolling vehicles 

 

# of 
wheels 

Arrangement Description Typical examples 

4  

 

Two motorized wheels in the 

rear, 2 steered wheels in the 

front; steering has to be 

differ- ent for the 2 wheels to 

avoid slipping/skidding. 

Car with rear-wheel 
drive 

 

 

Two motorized and steered 

wheels in the front, 2 free 

wheels in the rear; steering 

has to be different for the 2 

wheels to avoid 

slipping/skidding. 

Car with front-wheel 
drive 

 

 

Four steered and motorized 

wheels 

Four-wheel drive, four- 

wheel steering Hyperion 

(CMU) 

 

 

Two traction wheels 

(differen- tial) in rear/front, 2 

omnidirec- tional wheels in 

the front/rear 

Charlie (DMT-EPFL) 

 

 

Four omnidirectional wheels Carnegie Mellon Uranus 

 

 

Two-wheel differential drive 

with 2 additional points of 

con- tact 

EPFL Khepera, 

Hyperbot Chip 

 

 

Four motorized and steered 

castor wheels 

Nomad XR4000 
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Table 2.1 

Wheel configurations for rolling vehicles 

 

# of 
wheels 

Arrangement Description Typical examples 

6  

 

Two motorized and steered 

wheels aligned in center, 1 

omnidirectional wheel at 

each corner 

First 

 

 

Two traction wheels 

(differen- tial) in center, 1 

omnidirec- tional wheel at 

each corner 

Terregator (Carnegie 

Mel- lon University) 

Icons for the each wheel type are as follows: 
 

 

 

unpowered omnidirectional wheel (spherical, castor, Swedish); 

 
 

 

motorized Swedish wheel (Stanford wheel); 

 
 

 

unpowered standard wheel; 

 
 

 

motorized standard wheel; 
 

 
 

motorized and steered castor wheel; 
 

 

 

steered standard wheel; 
 

 

 
connected wheels. 

 

 
2.3.1.4 Maneuverability 

Some robots are omnidirectional, meaning that they can move at any 

time in any direction along the ground plane (x y) regardless of the 

orientation of the robot around its vertical axis. This level of 

maneuverability requires wheels that can move in more than just one 

direction, and so omnidirectional robots usually employ Swedish or 
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spherical wheels that are powered. A good example is Uranus, shown 

in figure 2.24. This robot uses four Swed- ish wheels to rotate and 

translate independently and without constraints. 
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Figure 2.21 

Cye, a commercially available domestic robot that can vacuum and make deliveries in the home, is 

built by Aethon Inc. (http://www.aethon.com). © Aethon Inc. 

 

 
In general, the ground clearance of robots with Swedish and 

spherical wheels is some- what limited due to the mechanical 

constraints of constructing omnidirectional wheels. An interesting 

recent solution to the problem of omnidirectional navigation while 

solving this ground-clearance problem is the four-castor wheel 

configuration in which each castor wheel is actively steered and 

actively translated. In this configuration, the robot is truly 

omnidirectional because, even if the castor wheels are facing a 

direction perpendicular to the desired direction of travel, the robot can 

still move in the desired direction by steering these wheels. Because 

the vertical axis is offset from the ground-contact path, the result of this 

steering motion is robot motion. 

In the research community, other classes of mobile robots are 

popular which achieve high maneuverability, only slightly inferior to 

that of the omnidirectional configurations. In such robots, motion in a 

particular direction may initially require a rotational motion. With a 

circular chassis and an axis of rotation at the center of the robot, such 

a robot can spin without changing its ground footprint. The most 

popular such robot is the two-wheel differential-drive robot where the 

two wheels rotate around the center point of the robot. One or two 

additional ground contact points may be used for stability, based on the 
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appli- cation specifics. 

In contrast to the above configurations, consider the Ackerman 

steering configuration common in automobiles. Such a vehicle typically 

has a turning diameter that is larger than the car. Furthermore, for such 

a vehicle to move sideways requires a parking maneuver con- sisting of 

repeated changes in direction forward and backward. Nevertheless, 

Ackerman steering geometries have been especially popular in the 

hobby robotics market, where a robot can be built by starting with a 

remote control racecar kit and adding sensing and autonomy to the 

existing mechanism. In addition, the limited maneuverability of 

Ackerman 
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steering has an important advantage: its directionality and steering 

geometry provide it with very good lateral stability in high-speed turns. 

 

2.3.1.5 Controllability 

There is generally an inverse correlation between controllability and 

maneuverability. For example, the omnidirectional designs such as the 

four-castor wheel configuration require significant processing to 

convert desired rotational and translational velocities to individual wheel 

commands. Furthermore, such omnidirectional designs often have 

greater degrees of freedom at the wheel. For instance, the Swedish 

wheel has a set of free rollers along the wheel perimeter. These 

degrees of freedom cause an accumulation of slippage, tend to reduce 

dead-reckoning accuracy and increase the design complexity. 

Controlling an omnidirectional robot for a specific direction of travel 

is also more diffi- cult and often less accurate when compared to less 

maneuverable designs. For example, an Ackerman steering vehicle 

can go straight simply by locking the steerable wheels and driv- ing the 

drive wheels. In a differential-drive vehicle, the two motors attached to 

the two wheels must be driven along exactly the same velocity profile, 

which can be challenging considering variations between wheels, 

motors, and environmental differences. With four- wheel omnidrive, 

such as the Uranus robot, which has four Swedish wheels, the problem 

is even harder because all four wheels must be driven at exactly the 

same speed for the robot to travel in a perfectly straight line. 

In summary, there is no “ideal” drive configuration that 

simultaneously maximizes sta- bility, maneuverability, and 

controllability. Each mobile robot application places unique constraints 

on the robot design problem, and the designer’s task is to choose the 
most appropriate drive configuration possible from among this space 

of compromises. 

 

2.3.2 Wheeled locomotion: case studies 

Below we describe four specific wheel configurations, in order to 

demonstrate concrete applications of the concepts discussed above to mobile 

robots built for real-world activities. 
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2.3.2.1 Synchro drive 

The synchro drive configuration (figure 2.22) is a popular arrangement 

of wheels in indoor mobile robot applications. It is an interesting 

configuration because, although there are three driven and steered 

wheels, only two motors are used in total. The one translation motor 

sets the speed of all three wheels together, and the one steering motor 

spins all the wheels together about each of their individual vertical 

steering axes. But note that the wheels are being steered with respect 

to the robot chassis, and therefore there is no direct way of reorienting 

the robot chassis. In fact, the chassis orientation does drift over time due 

to uneven tire slippage, causing rotational dead-reckoning error. 
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steering 
 

 

 

 

steering pulley driving pulley 

 
 
 
 
 
 
 
 
 
 

rolling axis 

 

 

Figure 2.22 

Synchro drive: The robot can move in any direction; however, the orientation of the chassis is not 

controllable. 

 
 

Synchro drive is particularly advantageous in cases where 

omnidirectionality is sought. So long as each vertical steering axis is 

aligned with the contact path of each tire, the robot can always reorient 

its wheels and move along a new trajectory without changing its foot- 

print. Of course, if the robot chassis has directionality and the 

designers intend to reorient the chassis purposefully, then synchro 

drive is only appropriate when combined with an independently 

rotating turret that attaches to the wheel chassis. Commercial research 

robots such as the Nomadics 150 or the RWI B21r have been sold 

with this configuration (figure 1.12). 

In terms of dead reckoning, synchro drive systems are generally 

superior to true omni- directional configurations but inferior to 

differential-drive and Ackerman steering systems. There are two main 

reasons for this. First and foremost, the translation motor generally 

drives the three wheels using a single belt. Because of to slop and 

backlash in the drive train, whenever the drive motor engages, the 

closest wheel begins spinning before the fur- thest wheel, causing a 
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small change in the orientation of the chassis. With additional changes 

in motor speed, these small angular shifts accumulate to create a large 

error in ori- entation during dead reckoning. Second, the mobile robot 

has no direct control over the ori- entation of the chassis. Depending on 

the orientation of the chassis, the wheel thrust can be highly 

asymmetric, with two wheels on one side and the third wheel alone, or 

symmetric, with one wheel on each side and one wheel straight ahead 

or behind, as shown in figure 

2.22. The asymmetric cases result in a variety of errors when tire-

ground slippage can occur, again causing errors in dead reckoning 

of robot orientation. 
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Figure 2.23 

The Tribolo designed at EPFL (Swiss Federal Institute of Technology, Lausanne, Switzerland. Left: 

arrangement of spheric bearings and motors (bottom view). Right: Picture of the robot without 

the spherical wheels (bottom view). 

 
 

 

2.3.2.2 Omnidirectional drive 

As we will see later in section 3.4.2, omnidirectional movement is of 

great interest for com- plete maneuverability. Omnidirectional robots 

that are able to move in any direction      ( x y  ) at any time are also 

holonomic (see section 3.4.2). They can be realized by either using 

spherical, castor, or Swedish wheels. Three examples of such 

holonomic robots are presented below. 

 
Omnidirectional locomotion with three spherical wheels. The 

omnidirectional robot depicted in figure 2.23 is based on three 

spherical wheels, each actuated by one motor. In this design, the 

spherical wheels are suspended by three contact points, two given by 

spher- ical bearings and one by a wheel connected to the motor axle. 

This concept provides excel- lent maneuverability and is simple in 

design. However, it is limited to flat surfaces and small loads, and it is 

quite difficult to find round wheels with high friction coefficients. 
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Omnidirectional locomotion with four Swedish wheels. The 

omnidirectional arrange- ment depicted in figure 2.24 has been used 

successfully on several research robots, includ- ing the Carnegie 

Mellon Uranus. This configuration consists of four Swedish 45-degree 

wheels, each driven by a separate motor. By varying the direction of 

rotation and relative speeds of the four wheels, the robot can be 

moved along any trajectory in the plane and, even more impressively, 

can simultaneously spin around its vertical axis. 
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Figure 2.24 

The Carnegie Mellon Uranus robot, an omnidirectional robot with four powered-swedish 45 wheels. 

 

 
For example, when all four wheels spin “forward” or “backward” the 

robot as a whole moves in a straight line forward or backward, 

respectively. However, when one diagonal pair of wheels is spun in the 

same direction and the other diagonal pair is spun in the oppo- site 

direction, the robot moves laterally. 

This four-wheel arrangement of Swedish wheels is not minimal in 

terms of control motors. Because there are only three degrees of 

freedom in the plane, one can build a three- wheel omnidirectional 

robot chassis using three Swedish 90-degree wheels as shown in 

table 2.1. However, existing examples such as Uranus have been 

designed with four wheels owing to capacity and stability 

considerations. 

One application for which such omnidirectional designs are 

particularly amenable is mobile manipulation. In this case, it is 

desirable to reduce the degrees of freedom of the manipulator arm to 

save arm mass by using the mobile robot chassis motion for gross 

motion. As with humans, it would be ideal if the base could move 

omnidirectionally with- out greatly impacting the position of the 

manipulator tip, and a base such as Uranus can afford precisely such 

capabilities. 
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Omnidirectional locomotion with four castor wheels and eight motors. Another solu- 

tion for omnidirectionality is to use castor wheels. This is done for the Nomad XR4000 

from Nomadic Technologies (fig. 2.25), giving it excellent maneuverability. Unfortu- 

nately, Nomadic has ceased production of mobile robots. 

The above three examples are drawn from table 2.1, but this is not 

an exhaustive list of all wheeled locomotion techniques. Hybrid 

approaches that combine legged and wheeled locomotion, or tracked 

and wheeled locomotion, can also offer particular advantages. Below 

are two unique designs created for specialized applications. 
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Figure 2.25 

The Nomad XR4000 from Nomadic Technologies had an arrangement of four castor wheels for holo- 

nomic motion. All the castor wheels are driven and steered, thus requiring a precise synchronization 

and coordination to obtain a precise movement in x y and  . 

 

 

2.3.2.3 Tracked slip/skid locomotion 

In the wheel configurations discussed above, we have made the 

assumption that wheels are not allowed to skid against the surface. An 

alternative form of steering, termed slip/skid, may be used to reorient 

the robot by spinning wheels that are facing the same direction at 

different speeds or in opposite directions. The army tank operates this 

way, and the Nanokhod (figure 2.26) is an example of a mobile robot 

based on the same concept. 

Robots that make use of tread have much larger ground contact 

patches, and this can sig- nificantly improve their maneuverability in 

loose terrain compared to conventional wheeled designs. However, 

due to this large ground contact patch, changing the orientation of the 

robot usually requires a skidding turn, wherein a large portion of the 

track must slide against the terrain. 

The disadvantage of such configurations is coupled to the slip/skid 

steering. Because of the large amount of skidding during a turn, the 

exact center of rotation of the robot is hard to predict and the exact 
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change in position and orientation is also subject to variations 

depending on the ground friction. Therefore, dead reckoning on such 

robots is highly inac- curate. This is the trade-off that is made in return 

for extremely good maneuverability and traction over rough and loose 

terrain. Furthermore, a slip/skid approach on a high-friction surface can 

quickly overcome the torque capabilities of the motors being used. In 

terms of power efficiency, this approach is reasonably efficient on loose 

terrain but extremely inef- ficient otherwise. 
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Figure 2.26 

The microrover Nanokhod, developed by von Hoerner & Sulger GmbH and the Max Planck Institute, 

Mainz, for the European Space Agency (ESA), will probably go to Mars [138, 154]. 

 
 
 

2.3.2.4 Walking wheels 

Walking robots might offer the best maneuverability in rough terrain. 

However, they are inefficient on flat ground and need sophisticated 

control. Hybrid solutions, combining the adaptability of legs with the 

efficiency of wheels, offer an interesting compromise. Solu- tions that 

passively adapt to the terrain are of particular interest for field and space 

robotics. The Sojourner robot of NASA/JPL (see figure 1.2) represents 

such a hybrid solution, able to overcome objects up to the size of the 

wheels. A more recent mobile robot design for similar applications has 

recently been produced by EPFL (figure 2.27). This robot, called 

Shrimp, has six motorized wheels and is capable of climbing objects 

up to two times its wheel diameter [97, 133]. This enables it to climb 

regular stairs though the robot is even smaller than the Sojourner. 

Using a rhombus configuration, the Shrimp has a steering wheel in the 

front and the rear, and two wheels arranged on a bogie on each side. 

The front wheel has a spring suspension to guarantee optimal ground 
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contact of all wheels at any time. The steering of the rover is realized 

by synchronizing the steering of the front and rear wheels and the 

speed difference of the bogie wheels. This allows for high-precision 

maneuvers and turning on the spot with minimum slip/skid of the four 

center wheels. The use of parallel articulations for the front wheel and 

the bogies creates a virtual center of rotation at the level of the wheel 

axis. This ensures maximum stability and climbing abilities even for very 

low friction coefficients between the wheel and the ground. 
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Figure 2.27 

Shrimp, an all-terrain robot with outstanding passive climbing abilities (EPFL [97, 133]).  

 

The climbing ability of the Shrimp is extraordinary in comparison to 

most robots of sim- ilar mechanical complexity, owing much to the 

specific geometry and thereby the manner in which the center of mass 

(COM) of the robot shifts with respect to the wheels over time. In 

contrast, the Personal Rover demonstrates active COM shifting to 

climb ledges that are also several times the diameter of its wheels, as 

demonstrated in figure 2.28. A majority of the weight of the Personal 

Rover is borne at the upper end of its swinging boom. A dedi- cated 

motor drives the boom to change the front/rear weight distribution in 

order to facili- tate step-climbing. Because this COM-shifting scheme 

is active, a control loop must explicitly decide how to move the boom 

during a climbing scenario. In this case the Per- sonal Rover 

accomplished this closed-loop control by inferring terrain based on 

measure- ments of current flowing to each independently driven wheel 

[66]. 

As mobile robotics research matures we find ourselves able to 
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design more intricate mechanical systems. At the same time, the 

control problems of inverse kinematics and dynamics are now so 

readily conquered that these complex mechanics can in general be 

controlled. So, in the near future, we can expect to see a great number 

of unique, hybrid mobile robots that draw together advantages from 

several of the underlying locomotion mechanisms that we have 

discussed in this chapter. They will each be technologically 

impressive, and each will be designed as the expert robot for its 

particular environmental niche. 



Locomotion 73 
 

73 

 

 

 

   
 

Figure 2.28 

The Personal Rover, demonstrating ledge climbing using active center-of-mass shifting. 
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C H A P T  

 

3. Research Overview 

 

 
1 

Autonomous robots 

 
Both animals and robots manipulate objects in their environment in order to achieve 
certain goals. Animals use their senses (e.g. vision, touch, smell) to probe the 
environment. The resulting information, in many cases also en- hanced by the 
information available from internal states (based on short-term or long-term memory), 
is processed in the brain, often resulting in an action carried out by the animal, with 
the use of its limbs. 

Similary, robots gain information of the surroundings, using their sensors. The 

information is processed in the robot’s brain1, consisting of one or several processors, 
resulting in motor signals that are sent to the actuators (e.g. motors) of the robot. 

In this course, the problem of providing robots with the ability of making rational, 
intelligent decisions will be central. Thus, the development of robotic brains is the main 
theme of the course. However, a robotic brain cannot op- erate in isolation: It needs 
sensory inputs, and it must produce motor output in order to influence objects in the 
environment. Thus, while it is the author’s view that the main challenge in 
contemporary robotics lies with the devel- opment of robotic brains, consideration of 
the actual hardware, i.e. sensors, processors, motors etc., is certainly very important 
as well. 

This chapter gives a brief overview of robotic hardware, i.e. the actual frame 
(body) of a robot, as well as its sensors, actuators, processors etc. The 

 

 

Chapter 
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1The term control system is commonly used (instead of the term robotic brain). However, this term 

is misleading, as it leads the reader to think of classical control theory. Concepts from classical control 

theory are relevant in robots; For example, the low-level control of the motors of robots is often taken 

care of by PI- or PID-regulators. However, autonomous robots, i.e. freely moving robots that operate 

without direct human supervision, are expected to function in complex, unstructured environments, 

and to make their own decisions concerning which action to take in any given situation. In such cases, 

systems based only on classical control theory are simply insufficient. Thus, hereafter, the term robotic 

brain (or, simply, brain) will be used when referring to the system that provides an autonomous robot, 

however simple, with the ability to process information and decide upon which actions to take. 

 
1 
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Figure 1.1: Left panel: A Boe-bot. Right panel: A wheeled robot currently under construction in 

the Adaptive systems research group at Chalmers. 

 
various hardware-related issues will be studied in greater detail in the second half of 
the course, which will involve the construction of an actual robot of the kind shown in 
the left panel of Fig. 1.1. 

 

1.1 Robot types 

The are many different types of robots, and the taxonomy of such machines can be 
constructed in various ways. For example, one may classify different kinds of robots 
based on their complexity, their likeness to humans (or animals), their way of moving 
etc. In this course we shall limit ourselves to mobile robots, that is, robots that are 
able to move freely using, for example, wheels. The other main category of robots are 
stationary robotic arms, also referred to as robotic manipulators. Of course, as with 
any taxonomy, there are always ex- amples that do not fit neatly into any of the 
available categories. For example, a smart home equipped with a central computer 
and, perhaps, some form of manipulation capabilities, can also be considered a robot, 
albeit of a different kind. 

Robotic manipulators constitute a very important class of robots and they are used 
extensively in many industries, for example in assembly lines in the vehicle industry. 
However, such robots normally follow a predefined move- ment sequence and are not 
equipped with behaviors (such as collision avoid- ance) designed to avoid harming 
people. While there is nothing preventing the use of, for instance, sonar proximity 
sensors on a robotic manipulator, such op- tions are rarely used. Instead, manipulators 
are confined to robotic work cells, 
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Figure 1.2: A Kondo humanoid robot. Left panel: Front view. Right panel: Rear view. 

 
in which people are forbidden to enter while the manipulator is active. 

By contrast, in this course, we shall consider autonomous robots, i.e. robots that 
are capable of making their own decisions (depending on the situation at hand) rather 
than merely executing a pre-defined sequence of motions. In fact, since most robots 
equipped with such decision-making capabilities are mo- bile, one may define an 
autonomous robot as a mobile robot with the ability to make decisions. Two examples 
of mobile robots can be seen in Fig. 1.1. The left panel shows a Boe-bot, which will 
be assembled and used in the second half of the course.  Some of its main 
advantages are its small size (its length  is around 0.14 m and its width 0.11 m) and 
its simplicity. Needless to say, the robot also has several limitations; for example, its 
onboard processor (micro- controller) is quite slow. However, on balance, the Boe-bot 
provides a good introduction to the field of mobile robots. The right panel of Fig. 1.1 
shows a two-wheeled differentially steered robot which, although still under construc- 
tion at the Adaptive systems research group at Chalmers, is already being used in 
several research projects. This robot has a diameter of 0.40 m and a height of around 
1.00 m. 

Robotic manipulators have long dominated the market for robots, but with the 
advent of low-cost mobile robots the situation is changing: In 2007, the number of 
mobile robots surpassed the number of manipulators for the first time, and the gap is 
expected to widen over the next decades. 

The class of mobile robots can be further divided into subclasses, the most 
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Figure 1.3: The aluminium frame of a Boe-bot. 

 
 
 

important being legged robots and wheeled robots. Other kinds, such as fly- ing 
robots, exist as well, but will not be considered in this course. The class  of legged 
robots can be subdivided based on the number of legs, the most common types being 
bipedal robots (with two legs) and quadrupedal robots (with four legs). Most bipedal 
robots resemble humans, at least to some extent; such robots are referred to as 
humanoid robots. An example of a humanoid robot is shown in Fig. 1.2. Humanoid 
robots that (unlike the robot shown in Fig. 1.2) not only have the approximate shape 
of a human, but have also been equipped with more detailed human-like features, 
e.g. artificial skin, artificial hair etc., are called androids. It should be noted that the 
term humanoid refers to the shape of the robot, not its size; in fact, many humanoid 
robots are quite small. For example, the Kondo robot shown in Fig. 1.2 is 
approximately 0.35 m tall. 

 
Some robots are partly humanoid. For example, the wheeled robot shown in the 

right panel of Fig. 1.1 is currently being equipped with a humanoid up- per body. Unlike 
a fully humanoid robot, this robot need not be actively bal- anced, but will still exhibit 
many desirable features of humanoid robots, such as two arms for grasping and lifting 
objects, gesturing etc., as well as a head that will be equipped with two cameras for 
stereo vision and microphones providing capabilities for listening and speaking. 
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Figure 1.4: Left panel: Aluminium parts used in the construction of a rotating base for a 

humanoid upper body. The servo motor used for rotating the base is also shown, as well as 

the screws, washers and nuts. Right panel: The assembled base. 

 

1.2 Robotic hardware 

1.2.1 Construction material 

Regarding the material used in the actual frame of the robot, several options are 
available, such as e.g. aluminium, steel, various forms of plastic etc. The frame of a 
robot should, of course, preferably be constructed using a material that is both sturdy 
and light and, for that reason, aluminium is often chosen. Albeit somewhat expensive, 
aluminium combines toughness with low weight in a near-optimal way, at least for 
small mobile robots. Steel is typically too heavy to be practical in a small robot,  
whereas many forms of plastic eas-  ily break.  The frame of the robot used in this 
course (the Boe-bot) is made   in aluminium, and is shown in Fig. 1.3. The left panel 
of Fig 1.4 shows the aluminium parts used in a rotating base for a humanoid upper 
body. The as- sembled base, which can rotate around the vertical axis, is shown in 
the right panel. 

 
1.2.2 Sensors 

The purpose of robotic sensors is to measure either some physical characteris- tic of 
the robot (for example, its acceleration) or some aspect of its environment (for example, 
the detected intensity of a light source). The raw data thus ob- tained must then, in 
most cases, be processed further before being used in the brain of the robot. For 
example, an infrared (IR) proximity sensor may pro- vide a voltage (depending on the 
distance to the detected object) as its read- ing, which can then be converted to a 
distance, using the characteristics of the sensor available from its data sheet. 
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Figure 1.5: Left panel: A Khepera II robot. Note the IR proximity sensors (small black 

rectangles around the periphery of the robot), consisting of an emitter and a detector. Right 

panel: A Sharp GP2D12 infrared sensor. 

 
Needless to say, there exists a great variety of sensors for mobile robots. Here, 

only a brief introduction will be given, focusing on a few fundamental sensor types. 

 
Infrared proximity sensors 

An infrared proximity sensor (or IR sensor, for short), consists of an emitter and a 
detector. The emitter, a light-emitting diode (LED), sends out infrared light, which 
bounces off nearby objects, and the reflected light is then mea- sured by the detector 
(e.g. a phototransistor). Some IR sensors can also be used for measuring the ambient 
light level, i.e. the light observed by the detector when the emitter is switched off. As 
an example, consider the Khepera robot (manufactured by K-Team, www.k-
team.com), shown in the left panel Fig. 1.5. This robot is equipped with eight IR 
sensors, capable of measuring both am- bient and reflected light. The range of IR 
sensors is quite short, though. In  the Khepera robot, reflected light measurements 
are only useful to a distance of around 0.050 m from the robot, i.e. approximately one 
robot diameter, even though other IR sensors have longer range. Another example is 
the Sharp GP2D12 IR sensor, shown in the right panel of Fig. 1.5. This sensor detects 
ob- jects in the range [0.10, 0.80] m. It operates using a form of triangulation: Light is 
emitted from the sensor and, if an object is detected, the reflected light is re- ceived at 
an angle that depends on the distance to the detected object. The raw signal from the 
sensor consists of a voltage that can be mapped to a distance. The mapping is non-
linear, and for very short distances, the sensor cannot give 
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Figure 1.6: The left panel shows a simple encoder, with a single detector (A), that measures 

the interruptions of a light beam, producing the curve shown below the encoder. In the right 

panel, two detectors are used, making it possible to determine also the direction of rotation. 

 
reliable readings (hence the lower limit of 0.10 m). 

 
Digital optical encoders 

In many applications, accurate position information is essential for a robot, and there 
are many different methods for positioning, e.g. inertial navigation, GPS navigation, 
landmark detection etc., some of which will be considered in a later chapter. One of the 
simplest forms of positioning, however, is dead reck- oning, in which the position of 
a robot is determined based on measurements of the distance travelled by each wheel 
of the robot. This information, when combined with knowledge of the robot’s physical 
properties (i.e. its kinemat- ics, see Chapter 2) allows one to deduce the current 
position and heading. The process of measuring the rotation of the wheel of a robot 
is an example of odometry, and a sensor capable of such measurements is the 
digital optical encoder or, simply, encoder. Essentially, an encoder is a disc made 
of glass or plastic, with shaded regions that regularly interrupt a light beam. By count- 
ing the number of interruptions, the rotation of the wheel can be deduced, as shown 
in the left panel of Fig. 1.6. However, in order to determine also the di- rection of 
rotation, a second detector, placed at a quarter of a cycle out of phase 
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Figure 1.7: A Ping ultrasonic distance sensor. 

 
with the first detector, is needed (such an arrangement is called quadrature 
encoding, and is shown in the right panel of Fig. 1.6). 

 
Ultrasound (sonar) sensors 

Ultrasound sensors, also known as sonar sensors or simply sonars, are based on 
time-of-flight measurement. Thus, in order to detect the distance to an ob- ject, a sonar 

emits a brief pulse of ultrasonic sound, typically in the frequency range 40-50 kHz2. 
The sensor then awaits the echo. Once the echo has been detected, the distance to 
the object can be obtained using the fact that sound travels at a speed of around 340 
m/s. As in the case of IR sensors, there is both a lower and an upper limit for the 
detection range of a sonar sensor. If the distance to an object is too small, the sensor 
simply does not have enough time to switch from emission to listening, and the signal 
is lost. Similarly, if the distance is too large, the echo may be too weak to be detected. 

Fig. 1.7 shows a Ping ultrasonic distance sensor, which is commonly used in 
connection with the Boe-bot. This sensor can detect distances to objects in the range 
[0.02, 3.00] m. 

 
Laser range finders 

Laser range finders (LRFs) commonly rely, like sonar sensors, on time-of-flight 
measurements, but involve the speed of light rather than the speed of sound. Thus, a 
laser range finder emits pulses of laser light (in the form of thin beams), 

 

2For comparison, a human ear can detect sounds in the range 20 hz to 20 kHz. Thus, the sound 

pulse emitted by a sonar sensor is not audible. 
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Figure 1.8: Left panel: A Hokuyo URL-04LX laser range finder. Right panel: A typical reading, 

showing the distance to the nearest object in various directions. The pink rays indicate 

directions in which no detection is made. The maximum range of the sensor is 4 m. 

 
and measures the time it takes for the pulse to bounce off a target and return to the 

range finder. An LRF carries out a sweep over many directions3 resulting in an 
accurate local map of distances to objects along the line-of-sight of each ray. LRFs 
are generally very accurate sensors, but they are also much more expensive than 
sonars sensors and IR sensors. 

A Hokuyo URG-04LX LRF is shown in the left panel of Fig. 1.8. This sensor has a 
range of around four meters, with an accuracy of around 1 mm. It can generate 
readings in 683 different directions, with a frequency of around 10 Hz. As of the time 
of writing (Jan. 2010), a Hokuyo URG-04LX costs around 2,000 USD. The right panel 
of Fig. 1.8 shows a typical reading, obtained from the software delivered with the LRF. 

 
Cameras 

Cameras are used as the eyes of a robot. In many cases, two cameras are used, in 
order to provide the robot with binocular vision, allowing it to estimate the range to 
detected objects. There are many cameras available for robots, for example the 
CMUCam series which has been developed especially for use in mobile robots; The 
processor connected to the CMUCam is capable of basic image processing. At the 
time of writing (Jan. 2010), a CMUCam costs on the order of 150 USD. A low-cost 
alternative is to use ordinary webcams, for which prices start around 15 USD. Fig. 1.9 
shows a simple robotic head consisting of two servo motors (see below) and a single 
webcam. 

However, while the actual cameras may not be very costly, the use of cam- eras 
is computationally a very expensive procedure. Even at a low resolution, 

 

3A typical angular interval for an LRF is around 180-240 degrees. 
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Figure 1.9: A simple robotic head, consisting of two servo motors and a webcam. 

 
say 320 240 pixels, a webcam will deliver a flow of around 1.5 Mb/s, assum- ing a 
frame rate of 20 Hz and a single byte of data per pixel. The actual data transfer is 
easily handled by a Universal serial bus (USB), but the data must not only be 
transferred but also analyzed, something which is far from trivial. An introduction to 
image processing for robots will be given in a later chapter. 

 
Other sensors 

In addition to odometry based on digital optical encoders, robot positioning can be 
based on inertial sensors, i.e. sensors that measure the time derivatives of the 
position or heading angle of the robot. Examples of inertial sensors are 
accelerometers, measuring linear acceleration, and gyroscopes, measuring an- 
gular acceleration. Essentially, an accelerometer consists of a small object, with mass 
m, attached to a spring and damper, as shown in Fig. 1.10. As the system accelerates, 
the displacement z of the small object can be used to deduce the acceleration ẍ of the 
robot.  Given continuous measurements of the accelera- tion, as a function of time, 
the position (relative to the starting position) can be 
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Figure 1.10: An accelerometer. The motion of the small object (mass m) resulting from the 

acceleration of the larger object to which the accelerometer is attached can be used for 

deducing the acceleration. 

 

deduced. For robots operating in outdoor environments, positioning based on the 
global positioning system (GPS) is often a good alternative. The GPS re- lies on 
24 satellites that transmit radio frequency signals which can be picked up by objects 
on Earth. Given the exact position of (at least) three satellites, rel- ative to the position 
of e.g. a robot, the absolute position (latitude, longitude, and altitude) of the robot can 
be deduced. 

Other sensors include strain gauge sensors (measuring deformation), tac- tile 

(touch) sensors measuring physical contact between a robot and objects in its 

environment, and compasses, measuring the direction of movement. 

 
 

1.2.3 Actuators 

An actuator is a device that allows a robot to take action, i.e. to move or manip- ulate 
the surroundings in some other way. Motors, of course, are very common types of 
actuators. Other kinds of actuation include, for example, the use of microphones (for 
human-robot interaction). 

Movements can be generated in various ways, using e.g. electrical motors, 
pneumatic or hydraulic systems etc. In this course, we shall only consider electrical, 
direct-current (DC) motors and, in particular, servo motors. Thus, when referring to 
actuation in this course, the use of such motors is implied. 

Note that actuation normally requires the use of a motor controller in con- nection 
with the actual motor. This is so, since the microcontroller (see below) responsible for 
sending commands to the motor cannot, in general, provide sufficient current to drive 
the motor. The issue of motor control will be consid- ered briefly in connection with the 
discussion of servo motors below. 

z m 
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Figure 1.11: A conducting wire in a magnetic field. B denotes the magnetic field strength 

and I the current through the wire.  The Lorentz force F acting on the wire is given by F  = I 

× B. 

 
 
 
 
 
 
 
 
 
 
 
 

 

I 

Figure 1.12: A conducting loop of wire placed in a magnetic field. Due to the forces acting 

on the loop, it will begin to turn. The loop is shown from above in the right panel, and from 

the side in the left panel. 

 

DC motors 

Electrical direct current (DC) motors are based on the principle that a force acts on a 
wire in a magnetic field if a current is passed through the wire, as illustrated in Fig. 
1.11. If instead a current is passed through a closed loop of wire, as illustrated in Fig. 
1.12, the forces acting on the two sides of the loop will point in opposite directions, 
making the loop turn. A standard DC motor consists of an outer stationary cylinder 
(the stator), providing the magnetic field, and an inner, rotating part (the rotor). From 
Fig. 1.12 it is clear that the loop will reverse its direction of rotation after a half-turn, 
unless the direction of the current is reversed. The role of the commutator, connected 
to the rotor of a DC motor, is to reverse the current through the motor every half-turn, 
thus allowing continuous rotation. Finally, carbon brushes, attached to the stator, 
complete the electric circuit of the DC motor. There are types of DC motors 
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Figure 1.13: The equivalent electrical circuit for a DC motor. 

 
that use electromagnets rather than a permanent magnet, and also types that are 
brushless. However, a detailed description of such motors are beyond the scope of 
this text. 

DC motors are controlled by varying the applied voltage. The equations for DC 
motors can be divided into an electrical and a mechanical part. The motor can be 
modelled electrically by the equivalent circuit shown in Fig. 1.13. Letting V denote the 
applied voltage, and ω the angular speed of the motor shaft, the electrical equation 
takes the form 

 

di 

V = L 

dt 

+ Ri + VEMF, (1.1) 

where i is the current flowing through the circuit, L is the inductance of the motor, R 
its resistance, and VEMF the voltage (the back EMF) counteracting V . The back EMF 
depends on the angular velocity, and can be written as 

VEMF = ceω, (1.2) 

where ce is the electrical constant of the motor. For a DC motor, the generated torque 
τg is directly proportional to the current, i.e. 

τg = cti, (1.3) 

where ct is the torque constant of the motor. Turning now to the mechanical equation, 
Newton’s second law gives 

I 
dω 

= τ, (1.4) 

dt 

where I  is the combined moment of inertia of the motor and its load, and   τ is the 
total torque acting on the motor. For the DC motor, the equation takes the form 

 

 
 

EMF 
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dt  

= τg − τf − τ, (1.5) 
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Figure 1.14:  Left panel:  A HiTec  645MG servo.  The suffix MG indicates that the servo  is 

equipped with a metal gear train. Right panel: A Parallax servo, which has been modified for 

continuous rotation. Servos of this kind are used on the Boe-bot. The circular (left) and star-

shaped (right) white plastic objects are the servo horns. 

 
where τf is the frictional torque opposing the motion and τ is the (output) torque acting 
on the load. The frictional torque can be divided into two parts, the Coulomb friction 
(cCsgn(ω)) and the viscous friction (cvω). Thus, the equations for the DC motor can 
now be summarized as 

τ = 
ct 

V  − 
ctL di − 

cect ω, (1.6) 

g 
R R dt R 

dω 

I 
dt 

=  τg − cCsgn(ω) − cvω − τ, (1.7) 

In many cases, the time constant of the electrical circuit is much shorter than that of 
the physical motion, so the inductance term can be neglected. Further- more, for 
simplicity, the dynamics of the mechanical part can also be neglected under certain 
circumstances (e.g. if the moment of inertia of the motor and load is small).  Thus, 
setting di/dt and dω/dt to zero, the steady-state DC mo- tor equations, determining 
the torque τ on the load for a given applied voltage V and a given angular velocity ω 

τ = 
ct 

V  − 
cect ω, (1.8) 

τ =  τg − cCsgn(ω) − cvω, (1.9) 

are obtained. In many cases, the axis of a DC motor rotates too fast and gener- ates 
a torque that is too weak for driving a robot. Thus, a gear box is commonly used, which 
reduces the rotation speed taken out from the motor (on the sec- ondary drive shaft) 
while, at the same time, increasing the torque. For an ideal (loss-free) gear box, the 
output torque and rotation speed are given by 

τout = Gτ, 
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Figure 1.15: Pulse width modulation control of a servo motor. The lengths of the pulses 

determine the requested position angle of the motor output shaft. The interval betwwn pulses 

(typically around 20 ms) is denoted T . 

 

 

 
where G is the gear ratio. 

ωout = 
1 

ω, (1.10) 

G 

 

Servo motors 

A servo motor is essentially a DC motor equipped with control electronics and a gear 
train (whose purpose is to increase the torque to the required level for moving the 
robot, as described above). The actual motor, the gear train, and the control 
electronics, are housed in a plastic container. A servo horn (either plastic or metal) 
makes it possible to connect the servo motor to a wheel or some other structure. Fig. 
1.14 shows two examples of servo motors. 

The angular position of a servo motor’s output shaft is determined using a 
potentiometer. In a standard servo, the angle is constrained to a given range [ αmax, 

αmax], and the role of the control electronics is to make sure that the servo rotates to a 
set position α (given by the user). A servo is fitted with a three-wire cable. One wire 
connects the servo to a power source (for exam- ple, a motor controller or, in some 
cases, a microcontroller board) and another wire connects it to ground. The third wire 
is responsible for sending signals to the servo motor. In servo motors, a technique 
called pulse width modulation 
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Figure 1.16: An arm of a humanoid robot. The allowed rotation range of the elbow is around 

100 degrees. 

 
(PWM) is used: Signals in the form of pulses are sent (e.g. from a microcon- troller) 
to the control electronics of the servo motor. The duration of the pulses determine the 
required position, to which the servo will (attempt to) rotate, as shown in Fig. 1.15. For 
a walking robot (or for a humanoid upper body), the limitation to a given angular range 
poses no problem: The allowed rotation range of a servo is normally sufficient for, say, 
an elbow or a shoulder joint. As an example, an arm of a humanoid robot is shown in 
Fig. 1.16. For this particu- lar robot, the rotation range for the elbow joint is around 100 
degrees, i.e. easily within the range of a standard servo (around 180 degrees). The 
limitation is, of course, not very suitable for motors driving the wheels of a robot. 
Fortunately, servo motors can be modified to allow continuous rotation. The Boe-bot 
that will be built in the second half of the course uses Parallax continuous rotation 
servos (see the right panel of Fig. 1.14), rather than standard servos. 

 
Other motors 

There are many different types of motors, in addition to standard DC motors and servo 
motors. An example is the stepper motor, which is also a version of the DC motor, 
namely one that moves in fixed angular increments, as the name implies. However, in 
this course, only standard DC motors and servo motors will be considered. 

 
1.2.4 Processors 

Sensors and actuators are necessary for a robot to be able to perceive its envi- 
ronment and to move or manipulate the environment in various ways. How- 
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Figure 1.17: A Board of Education (BOE) microcontroller board, with a Basic Stamp II (BS2) 

microcontroller attached. In addition to the microcontroller, the BOE has a serial port for 

communication with a PC (used, for example, when uploading a program onto the BS2), as 

well as sockets for attaching sensors and electronic circuits. In this case, a simple circuit 

involving a single LED, has been built on the BOE. The two black sockets in the upper right 

corner are used for connecting up to four servo motors. 

 
ever, in addition to sensors and actuators, there must also be a system for an- alyzing 
the sensory information, making decisions concerning what actions to take, and 
sending the necessary signals to the actuators. 

In autonomous robots, it is common to use several processors to represent the 
brain of the robot. Typically, high-level tasks, such as decision-making, are carried out 
on a standard PC, for example a laptop computer mounted on the robot, whereas 
low-level tasks are carried out by microcontrollers, which will now be introduced briefly. 

 
Microcontrollers 

Essentially, a microcontroller is a single-chip computer, containing a central 
processing unit (CPU), read-only memory (ROM, for storing programs), random- 
access memory (RAM, for temporary storage, such as program variables), and 
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several input-output (I/O) ports. There exist many different microcontrollers, with 
varying degrees of complexity, and different price levels, down to a few USD for the 

simplest ones. An example is the Basic Stamp II4 (BS2) microcon- troller, which costs 
around 50 USD. 

While the BS2 is sufficient for the experimental work carried out in this course (in 
the next quarter), its speed is only around 4,000 operations per sec- ond (op/s) and it 
has a RAM memory (for program variables) of only 32 bytes and a ROM (for program 
storage) of 2 kilobytes (Kb). 

However, many alternative microcontrollers are available for more advanced robots. 
Two examples, with roughly the same price as the BS2, are the BasicX and ZBasic 
microcontrollers, which are both compatible with the BOE micro- controller board used 
together with the BS2. The BasicX microcontroller has a RAM memory of 400 bytes 
and 32 Kb for program storage, whereas ZBasic has 4 Kb of RAM and 62 Kb for 
program storage. BasicX executes around 83,000 op/s, whereas (some versions of) 
ZBasic can reach up to 2.9 million op/s. 

In many cases, microcontrollers are sold together with microcontroller boards (or 

microcontroller modules), containing sockets for wires connecting the mi- 

crocontroller to sensors and actuators as well as control electronics, power sup- ply 

etc. An example is the Board of education (BOE) microcontroller board. 

The BOE, shown in Fig. 1.17, is equipped with a solderless breadboard, on which 
electronic circuits can be built without any soldering, which is very use- ful for 
prototyping. 

Since microcontrollers do not have human-friendly interfaces such as a keyboard 
and a screen, the normal operating procedure is to write and compile programs on an 
ordinary computer (using, of course, a compiler adapted for the microcontroller in 
question), and then upload the programs onto the mi- crocontroller. In the case of the 
BS2 microcontroller, the language is a version of Basic called PBasic. 

 
Robotic brain architectures 

An autonomous robot must be capable of both high-level and low-level pro- cessing. 
The low-level processing consists, for example, of sending signals to motor controllers 
(see below) which, in turn, send (for example) PWM pulses to servo motors. Another 
low-level task is to retrieve raw data (e.g. a voltage value from an IR proximity sensor). 
The distinction between low-level and high-level tasks is a bit fuzzy. For example, the 
voltage value from an IR sen- sor (e.g. the Sharp GP2D12 mentioned above) can be 
mapped to a distance value, which of course normally is more relevant for decision-
making than the raw voltage value. The actual conversion would normally be 
considered a low-level task but might as well also be carried out on the robot’s onboard 
PC. 

 

4Basic Stamp is a registered trademark of Parallax, inc., see www.parallax.com. 

http://www.parallax.com/
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Figure 1.18: An example of a typical robotic brain architecture, for a differentially steered 

two-wheeled robot equipped with wheel encoders, three sonar sensors, one LRF, and two web 

cameras. 

 

The hardware configuration providing a robot’s processing capability is re- ferred to 
as the robotic brain architecture. An example of a typical robotic brain architecture 
is shown in Fig. 1.18. The robotic brain shown in the figure would be used in 
connection with a two-wheeled differentially steered robot. As can be seen in the 
figure, the microcontroller would handle low-level pro- cessing, such as measuring 
the pulse counts of the wheel encoders, collecting readings from the three sonars, 

and sending motor signals (e.g. desired set speeds) to the motor controller5, which, 
in turn, would send signals to the motors. However, the LRF and the web cameras 
would be directly connected, via USB (or, possibly, serial) ports, to the main processor 
(on the laptop), since most microcontrollers would not be able to handle the massive 
data flow from such sensors. 

The main program (i.e. the robotic brain), running on the laptop, would process 
the data from the various sensors. For example, the pulse counts from 

 

5A separate motor controller (equipped with its own power source) is often used for robotics 

applications, since the power source for the microcontroller may not be able to de- liver sufficient 

current for driving the motors as well. 
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Figure 1.19: An example of a robotic brain architecture for a Boe-bot. 

 
the wheel encoders would be translated to an estimate of position and head- ing, as 
described in Chapter 2. Given the processed sensory data, as well as in- formation 
stored in the (long-term or short-term) memory of the robotic brain (for example, a 
map of the arena in which the robot operates), the main pro- gram would determine 
the next action to be carried out by the robot, compute the appropiate motor 
commands and send them to the microcontroller. 

Note that the figure only shows an example: Many other configurations could be 
used as well. For example, there are cameras developed specifically for robotics 
applications that, unlike standard web cameras, are able to carry out much of the 
relevant image processing (e.g. detecting and extracting faces), and then only sending 
that information (rather than the raw pixel values) to the laptop computer. 

The robotic brain architecture shown in Fig. 1.18 would be appropriate for a rather 
complex (and costly!) robot.  Such robots are beyond the scope of  the experimental 
work carried out in the second half of this course. The ex- perimental work, which will 
be carried out using a Boe-bot (see the left panel of Fig. 1.1), involves a much simpler 
robotic brain architecture, illustrated in Fig. 1.19. As can be seen, in this case, the 
robot has a single processor, namely the BS2 microcontroller, which thus is 
responsible both for the low-level (sig- nal) processing and the high-level decision-
making. 

The microcontroller sends signals to the two servo motors and receives in- put 
from the sensors attached to the robot, for example, two photo-resistors, a sonar 
sensor, and whiskers. The whiskers are simple touch sensors that give a reading of 
either 0 (if no object is touched) or 1 (if the whisker touches an object). Of course, 
other sensors (such as IR sensors or simple wheel encoders) can be added as well, 
but one should keep in mind that the processing capabil- ity of the BS2 is very limited. 
Note that no motor controller is used: The BOE is capable of generating sufficient 
current for up to four Parallax servo motors. 
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4. Methodology 

 

 

 

 

 

 

3 
Simulation of autonomous robots 

 
Simulations play an important role in research on (and development of) auto- nomous 
robots, for several reasons. First of all, testing a robot in a simulated environment can 
make it possible to detect whether or not the robot is prone to catastrophic failure in 
certain situations, so that the behavior of the robot can be altered before it is 
unleashed in the real world. Second,  building a robot  is often costly (for example, 
most laser range finders cost several thousand USD). Thus, through simulations, it is 
possible to test several designs before constructing an actual robot. Furthermore, it is 
common to use stochastic opti- mization methods, such as evolutionary algorithms, in 
connection with the de- velopment of autonomous robots. Such methods require that 
many different robotic brains be evaluated, which is very time-consuming if the work 
must be carried out in an actual robot. Thus, in such cases, simulations are often 
used, even though the resulting robotic brains must, of course, be thoroughly tested 
in real robots, a procedure which often requires several iterations involving simulated 
and actual robots. In this chapter, an introduction to some of the general issues 
pertaining to robotic simulations will be given, along with a brief description of (some 
of) the features of two particular simulators for mo- bile robots, namely GPRSim and 
ARSim. GPRSim is an advanced 3D simulator for automomous robots, which is used 
in certain research projects within the Adaptive systems group. ARSim is a simplified 
(2D) Matlab simulator used in this course. 

 

3.1 Simulators 

Over the years, several different simulators for mobile robots have appeared, with 
varying degrees of complexity.  One of the most ambitious simulators  to date is 
Robotics studio from Microsoft, which allows the user to simulate many of the 
commercially available mobile robots, or even to assemble a (vir- 
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tual) robot using generic parts. 
Some simulators include not only general simulation of the kinematic and 

dynamics of robots, but also procedures for stochastic optimization. Some ex- amples 
of such simulators are Webots, which is manufactured by Cyberbotics 
(www.cyberbotics.com) and the open source package Darwin2K, which can be 
found at darwin2k.sourceforge.net. 

The Adaptive systems research group at Chalmers has developed a simu- lator 
called the General-purpose robotic simulator (GPRSim), which is exten- sively used 
in our research projects. Unlike the other simulators mentioned above, GPRSim 
features, as an integral part of the simulator, an implementa- tion of the general-
purpose robotic brain structure (GPRBS) (also developed in the Adaptive systems 
research group). The GPRBS, in turn, consists of a standardized representation of a 
robotic brain, consisting of a set of so called brain processes as well as a decision-
making system. This structure allows re- searchers to build complex robotic brains 
involving many different behavioral aspects and also to export the resulting robotic 
brain for use in real (physical) robots. The existence of a standardized representation 
for robotic brains also makes it possible, for example, to reuse parts of a previously 
developed robotic brain in other applications than the original one. 

However, GPRSim is primarily a research tool and, as such, it is not very user-
friendly. Moreover, the underlying code is quite complex. Thus, in this course, a 
different simulator will be used, namely the Autonomous robot sim- ulator (ARSim), 
which is a 2D simulator written in Matlab. This simulator is generally too slow to be 
useful in research projects, but it is perfectly suited to most of the tasks considered in 
this course. Note also that, even though ARSim is greatly simplified, many parts of the 
code (for example the simulation of DC motors, IR sensors etc.) are essentially the 
same in GPRSim and ARSim 

 
3.2 General simulation issues 

In Fig. 3.1, the general flow of a single-robot simulation is shown. Basically, after 
initialization, the simulation proceeds in a stepwise fashion. In each step, the simulator 
reads the sensors of the robot, and the resulting signals are sent to the robotic brain, 
which computes appropriate motor signals that, finally, are sent to the motors. Given 
the motor signals, the acceleration of the robot can be updated, and new velocities 
and positions can be computed. Changes to the arena (if any) are then made, and the 
termination criteria are checked. 

 
3.2.1 Timing of events 

As mentioned earlier, simulation results in robotics must be validated in an actual 
robot. However, in order for this to be possible, some care must be 
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Figure 3.1: The flow of a single-robot simulation. Steps 1 through 6 are carried out in each 

time step of the simulation. 

 
taken, particularly regarding steps 1-3. To be specific, one must make sure that these 
steps can be executed (on the real robot) in a time which does not exceed the time 
step length in the simulation. Here, it is important to distinguish between two different 
types of events, namely (1) those events that take a long time to complete in simulation, 
but would take a very short time in a real robot, and (2) those events that are carried 
out rapidly in simulation, but would take a long time to complete in a real robot. 

An example of an event of type (1) is collision-checking.   If performed    in a 
straight-forward, brute-force way, the possibility of a collision between the (circular, 
say) body of the robot and an object must be checked by going through all lines in a 
2D-projection of the arena. A better way (used, for ex- ample, in GPRSim) is to 
introduce an invisible grid, and only check for colli- sions between the robot and those 
objects that (partially) cover the grid cells that are also covered by the robot. However, 
even when such a procedure is used, collision-checking may nevertheless be very 
time-consuming in simula- tion whereas, in a real robot, it amounts simply to reading a 
bumper sensor (or, as on the Boe-bot, a whisker), and transferring the signal (which, in 
this case, is binary, i.e. a single bit of information) from the sensor to the brain of the 
robot. Events of this type cause no (timing) problems at the stage of transferring the 
results to a real robot, even though they may slow down the simulation con- siderably. 

An example of an event of type (2) is the reading of sensors. For exam- ple, an IR 
sensor can be modelled using simple ray-tracing (see below) and, provided that the 
number of rays used is not too large, the update can be car- 

5. Update arena 

4. Move robot 

3. Compute motor signals 

2. Process information 

1. Obtain sensor readings Initialize 

6. Check termination criteria 



CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 103
 

103  

× 

× 

 
Process information, 
compute motor output 

Transfer motor 
signals 

 

 
 

 

 
 

 
 

t 

Figure 3.2: A timing diagram. The boxes indicate the time required to complete the corre- 

sponding event in hardware, i.e. a real robot. In order for the simulation to be realistic, the 

time step ∆t used in the simulation must be longer than the total duration (in hardware) of all 

events taking place within a time step. 

 

ried out in a matter of microseconds in a simulator. However, in a real robot it might 
take longer time. While the reading of an IR sensor involves a very limited signal flow 
compared to the reading of a camera with, say, 640 480 pixels, the transfer of the 
reading from the sensor to the robotic brain is a po- tential bottleneck. A common 
setup is to have a microcontroller (see Chapter 
1) handling the low-level communication, i.e. obtaining sensor readings and sending 
signals to actuators, and a PC (for example, a laptop placed on the robot) handling 
high-level issues, such as decision-making, motion planning etc. Very often, the 
communication between the laptop and the microcontroller takes place through a serial 
port, operating with a speed of, say, 9600 or 38400 bits/s. If the onboard PC must 
read, for example, four proximity sensors (as- suming one byte per reading) and send 
signals to two motors (again assuming that each signal requires one byte), a total of 
6 8 = 48 bits is needed, lim- iting the number of interactions between the PC and the 
microcontroller to 9600/48  =  200  per  second  in  the  case  of  a  serial  port  speed  of  
9600  bits/s. As another, more specific, example, consider the small mobile robot 
Khepera, shown in the left panel of Fig. 1.5. In its standard configuration, it is equipped 
with eight IR sensors, which are read in a sequential way every 2.5 ms, so that the 
processor of the robot receives an update of a given IR sensor’s reading every 20 ms. 
The updating frequency of the sensors is therefore limited to 50 Hz. Thus, a simulation 
of a Khepera robot in which the simulated sensors are updated with a frequency of, 
say, 100 Hz would be unrealistic. 

In practice, the problem of limited updating frequency in sensors can be solved by 
introducing a Boolean readability state for each (simulated) sensor. Thus, in the case 
of a Khepera simulation with a time step of 0.01s, the sensor values would be updated 
only every other time step. Step 2, i.e. the processing of information by the brain of the 
robot, must also, in a realistic simulation, be of limited complexity so that the three 
steps (1, 2, and 3) together can be carried 

 

  
Read 
first IR 
sensor 

 

Read 
second IR 
sensor 
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out within the duration ∆t (the simulation time step) when transferred to the real robot. 
An example of a timing diagram for a generic robot (not Khepera) is shown in Fig. 3.2. 
In the case shown in the figure, two IR proximity sensors are read, the information is 
processed (for example, by being passed through an artificial neural network), and 
the motor signals (voltages, in the case of standard DC motors) are then transferred 
to the motors. The figure shows a case which could be realistically simulated, with the 
given time step length 
∆t. However, if two additional IR sensors were to be added, the simulation would 
become unrealistic: The real robot would not be able to complete all steps during the 
time ∆t. 

For the simple robotic brains considered in this course, step 2 would gener- ally be 
carried out almost instantaneously (compared to step 1) in a real robot. Similarly, the 
transfer of motor signals to a DC motor is normally very rapid (note, however, that the 
dynamics of the motors may be such that it is pointless to send commands with a 
frequency exceeding a certain threshold). 

To summarize, a sequence of events that takes, say, several seconds per time 
step to complete in simulation (e.g. the case of collision-checking in a very complex 
arena) may be perfectly simple to transfer to a real robot, whereas a sequence of 
events (such as the reading of a large set of IR sensors) that can be completed almost 
instantaneously in a simulated robot, may simply not be transferable to a real robot, 
unless a dedicated processor for signal processing and signal transfer is used. 

 
3.2.2 Noise 

Another aspect that should be considered in simulations is noise. Real sensors and 
actuators are invariably noisy, on several levels. Furthermore, even sen- sors that are 
supposed to be identical often show very different characteristics in practice. In 
addition, regardless of the noise level of a particular sensor, the frequency with which 
readings can be updated is limited, thus introducing another source of noise, in certain 
cases. For example, the limited sampling frequency of wheel encoders implies that, 
even in the (unrealistic) case where the kinematic model is perfect and there are no 
other sources of noise, the in- tegrals in the kinematic equations (Eqs. (2.7)-(2.9)) can 
only be approximately computed. 

Thus, in any realistic robot simulation, noise must be added, at all relevant levels. 
Noise can be added in several different ways. A common method (used in GPRSim 
and ARSim) is to take the original reading S of a sensor and add noise to form the 

actual reading Ŝ as 

Ŝ = SN (1, σ), (3.1) 

where N (1, σ) denotes the normal (Gaussian) distribution with mean 1 and 
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standard deviation σ. Of course, other distributions (e.g. a uniform distribu- tion) can 
be used as well. 

An alternative method is to take some measurements of a real sensor and store 
the readings in a lookup table, which is then used by the simulated robot. For example, 
in the case of an IR sensor with a range of, say, 0.5 m, one may, for example, take 10 
readings each at distances of 0.05, 0.10, . . . , 0.50 m, and store those readings in a 
matrix. In the simulator, when the IR sensor is used, the distance L to the nearest 
obstacle is determined, and the reading is then obtained by interpolating linearly 
between two samples from the lookup table. For example, if L  =  0.23 m, a randomly 
chosen sample ŝ20 is taken from the 10 readings stored for L = 0.20 m, and another 
randomly chosen sample ŝ25 is taken from the readings stored for L = 0.25 m. The 
reading of the simulated sensor is then taken as 

Ŝ = ŝ  + 
0.23 − 0.20 

(ŝ
 − 

ŝ 
 

) (3.2) 

0.25 − 0.20 
 

This method has the advantage of forming simulated readings from actual sensor 
readings, rather than introducing a model for the noise. Furthermore, using lookup 
tables, it is straightforward to account for the individual nature of supposedly identical 
sensors. However, a clear disadvantage is the need for generating the lookup tables, 
which often must contain a very large number of samples taken not only at various 
distances, but also, perhaps, at various angles between the forward direction of the 
sensor and the surface of the obstacle. Thus, the first method, using a specific noise 
distribution, is normally used instead. 

 
3.2.3 Sensing 

In addition to correct timing of events and the addition of noise in sensors and 
actuators, it is necessary to make sure that the sensory signals received by the 
simulated robot do not contain more information than could be provided by the 
sensors of the corresponding real robot. For example, in the simulation of a robot 
equipped only with wheel encoders (for odometry), it is not allowed to provide the 
simulated robot with continuously updated and error-free po- sition measurements. 
Instead, the simulated wheel encoders, including noise and other inaccuracies, should 
be the only source of information regarding the position of the simulated robot. 

In both GPRSim and ARSim, several different sensors have been imple- mented, 
namely (1) wheel encoders, (2) IR proximity sensors, and (3) com- passes. In 
addition, GPRSim (but not ARSim) also features (4) sonar sensors and (5) laser range 
finders (LRFs). An important subclass of (simulated) sen- sors are ray-based 
sensors, which use a simple form of ray tracing in order to 

20 25 
20 
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form their reading(s). Examples of ray-based sensors are IR proximity sensors, sonar 
sensors, and laser range finders. 

Now, the different natures of, say, an IR sensor, which gives a fuzzy read- ing 
based on infrared light, and an LRF, which gives very accurate readings (in many 
directions) based on laser light, imply that slightly different procedures must be used 
when forming the (simulated) sensor readings of those two sen- sor types. However, 
in both cases, the simulation of the sensor requires ray tracing, which will now be 
considered. 

 
Ray-based sensors  In ray-based sensors,  the formation of sensor readings   is 
based on the concept of sensor rays. Basically, a number of rays are sent out from 
a sensor, in various directions (depending on the opening angle of the sensor), and 
the distance to the nearest obstacle is determined. If no ob- stacle is available within 
the range of the sensor, the ray in question provides no reading. Of course, in order 
to obtain any ray reading, not only the robot must be available, but also the objects 
(e.g. walls and furniture) located in the arena in which the robot is operating. In 
GPRSim, objects are built from boxes and cylinders. Boxes are represented as a 
sequence of six planes, whereas (the mantle surface of) cylinders are represented by 
a sufficient number of planes (usually around 10-20) to approximate the circular cross 
section of the cylinder. The ray readings are thus obtained using general equations 

for line- plane intersections1. Here, however, we shall only consider the simpler two- 
dimensional case, in which all surfaces are vertical and where the sensors are 
oriented such that all emitted rays are parallel to the ground. In such cases, the arena 
objects can be represented simply as a sequence of lines in two dimen- sions. Indeed, 
this is how objects are represented in ARSim. 

An example of such a configuration is shown in Fig. 3.3. The left panel shows a 
screenshot from GPRSim, in which an LRF mounted on top of a robot takes a reading 
in an arena containing only walls. The right panel shows a two- dimensional 
representation of the arena and the LRF (the body of the robot is not shown). Given 
the exact position of a ray’s starting point, as well as the range of the corresponding 
sensor, it is possible to determine the distance be- tween the ray and the nearest 
obstacle using general equations for line-line intersection, which will be described 
next. However, it should first be noted that, even though the simulator of course uses 
the exact position of the robot and its sensors in order to compute sensor readings, 
the robot (or, more specif- ically, its brain) is only provided with information regarding 
the actual sensor readings. 

Consider now a single sensor ray. Given the start and end points of the 
 

1In order to speed up the simulator, a grid (also used in collision checking) is used, such that only 

those obstacles that are (partially) located in the grid cells currently covered by the sensor are 

considered. 
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Figure 3.3: Left panel: A screenshot from GPRSim, showing an LRF taking a reading in an 

arena containing only walls. Right panel: A two-dimensional representation of the sensor 

reading. The dotted ray points in the forward direction of the robot which, in this case, coincides 

with the forward direction of the LRF. 

 
ray, its equation can be determined. Let (xa, ya) denote the start point for the ray (which 
will be equal to the position of the sensor, if the size of the latter can be neglected). 
Once the absolute direction (βi) of the sensor ray has been determined, the end point 
(xb, yb) of an unobstructed ray (i.e. one that does not hit any obstacle) can be obtained 
as 

 

(xb, yb) = (xa + D cos βi, ya + D sin βi), (3.3) 

where D denotes the sensor range. Similarly, any line corresponding to the side of an 

arena object can be defined using the coordinates of its start and end points. Note 

that, in Fig. 3.3, all lines defining arena objects coincide with coordinate axes, but this 

is, of course, not always the case. Now, in the case of two lines of infinite length, 

defined by the equations yk =  ck  + dkx,  k  =  1, 2,  it is trivial to find the intersection 

point (if any) simply by setting y1 = y2. However, here we are dealing with line segments 

of finite length. In this case, the intersection point can be determined as follows: 

Letting P
a
 = (x

a
, y

a
) and i i i 

P
b
 = (x

b
, y

b
) , denote the start and end points, respectively, of line i, i = 1, 2, 

i i i 

the equations for an arbitrary point Pi along the two line segments can be 
written 

P1 = P
a
 + t 

.
P

b
 − P

a
Σ 

, (3.4) 

 
and 

1 1 1 

P2 = P
a
 + u 

.
P

b
 − P

a
Σ 

, (3.5) 
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where (t, u) ∈ [0, 1]. Solving the equation P1 = P2 for t and u gives, after some 
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algebra, 
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(yb − ya)(xb − xa) − (xb − xa)(yb − ya) 

 

(3.6) 

and 
2 2 1 1 2 2 1 1 

(x
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)(y
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b
 − y

a
)(x

a
 − x

a
) 

(yb − ya)(xb − xa) − (xb − xa)(yb − 

ya) 

(3.7) 

An intersection occurs if both t and u are in the range [0, 1]. Assuming that the first 
line (with points given by P1) is the sensor ray, the distance d between the sensor and 
the obstacle, along the ray in question, can then easily be formed by simply 
determining P1 using the t value found, and computing 

d = |P1 − P
a
| = |t(P

b
 − P

a
)|. (3.8) 

If the two lines happen to be parallel, the denominator becomes equal to zero2. Thus, 
this case must be handled separately. 

In simulations, for any time step during which the readings of a particular sensor 
are to be obtained, the first step is to determine the origin of the sensor rays (i.e. the 
position of the sensor), as well as their directions. An example is shown in Fig. 3.4. 
Here, a sensor is placed at a point ps, relative to the center of the robot. The absolute 
position Ps (relative to an external, fixed coordinate system) is given by 

Ps = X + ps, (3.9) 

where X = (X, Y ) is the position of the (center of mass of the) robot. Assuming that the 
front direction of the sensor is at an angle α relative to the direction of heading (ϕ) of 
the robot, and that the sensor readings are to be formed using N equally spaced rays 
over an opening angle of γ, the absolute direction βi of the i

th
 ray equals 

 
where δγ is given by 

βi = ϕ + α − 
2 

+ (i − 1)δγ, (3.10) 

γ 

δγ =   

N − 

1 

. (3.11) 

Now, the use of the ray readings differs between different simulated sensors. Let us 
first consider a simulated IR sensor. Here, the set of sensor rays is used only as an 
artificial construct needed when forming the rather fuzzy reading of such a sensor. In 
this case, the rays themselves are merely a convenient com- putational tool. Thus, for 
IR sensors, the robotic brain is not given information regarding the individual rays. 
Instead, only the complete reading S is pro- vided, and it is given by 

   S =
 1

 

N 

N 

ρi, (3.12) 

i=1 

t = 

u = 
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2In case the two lines are not only parallel but also coincident, both the numerators and the 

denominators are equal to zero in the equations for t and u. 
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Figure 3.4: The right panel shows a robot equipped with two IR sensors, and the left panel 

shows a blow-up of the left sensor. In this case, the number of rays (N) was equal to 5. The 

leftmost and rightmost rays, which also indicate the opening angle γ of the IR sensor are shown 

as solid lines, whereas the three intermediate rays are shown as dotted lines. 

 
where ρi is the ray reading of ray i. Ideally, the value of N should be very large for the 
simulated sensor to represent accurately a real IR sensor. However, in practice, rather 
small values of N (3-5, say) is used in simulation, so that the reading can be obtained 
quickly. The loss of accuracy is rarely important, since the (fuzzy) reading of an IR 
sensor is normally used only for proximity detec- tion (rather than, say, mapping or 
localization). An illustration of a simulated IR sensor is given in Fig. 3.4. 

A common phenomenological model for IR sensor readings (used in GPRSim and 
ARSim) defines ρi as 

ρ = min 

.. 
c1 

+ c 

Σ 

cos κ , 1

Σ 

, (3.13) 

i 2 2 i 

i 

where c1 and c2 are non-negative constants, di > 0 is the distance to the nearest object 
along ray i, and 

κi = − 
2 

+ (i − 1)δγ, (3.14) 

is the relative ray angle of ray i. If di > D (the range of the sensor), ρi = 0. Note that 
it is assumed that κi       [   π/2, π/2],  i.e. the opening angle cannot exceed π  radians.   
Typical opening angles are π/2 or less.   It should also be noted that this IR sensor 
model has limitations; for example, the model does not take into account the 
orientation of the obstacle’s surface (relative to the direction of the sensor rays) and 
neither does it account for the different IR reflectivity of different materials. 

For simulated sonar sensors (which are included in GPRSim but not in AR- Sim), 
the rays are also only used as a convenient computational tool, but the 
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final reading S is formed in a different way. Typically, sonar sensors give rather accurate 
distance measurements in the range [Dmin, Dmax], but sometimes fail  to give a reading 
at all. Thus, in GPRSim, the reading of a sonar sensor is formed as S = minidi with 
probability p and Dmax (no detection) with proba- bility 1    p.  Also, if S  <  Dmin  the reading 
is set to Dmin.  Typically,  the value of p is very close to 1. The number of rays (N ) is 
usually around 3 for simulated sonars. 

A simulated LRF, by contrast, gives a vector-valued reading, S, where each 
component Si is obtained simply as the distance di to the nearest obstacle along the 
ray. Thus, for LRFs, the sensor rays have a specific physical interpretation, made 
possible by the fact that the laser beam emitted by an LRF is very narrow. In GPRSim, 
if di > D, the corresponding laser ray reading is set to -1, to indi- cate the absence of 
any obstacle within range of the ray in question. Note that LRFs are only implemented 
in GPRSim. It would not be difficult to add such a sensor to ARSim, but since an LRF 
typically takes readings in 1,000 different directions (thus requiring the same number 
of rays), such sensors would make ARSim run very slowly. 

As a final remark regarding ray-based sensors, it should be noted that a given 
sensor ray i may intersect several arena object lines (see, for example, Fig. 3.3) In 
such cases, di is taken as the shortest distance obtained for the ray. 

 
3.2.4 Actuators 

A commonly used actuator in mobile robots is the DC motor. The equations describing 
such motors are given in Chapter 1. 

In both GPRSim and ARSim, a standard DC motor has been implemented. In this 
motor, the input signal is the applied voltage. Both the electrical and mechanical 
dynamics of the motors are neglected.  Thus the torque acting   on the motor shaft 
axis is given by Eqs. (1.8) and (1.9). Gears are imple- mented in both simulators, so 
that the torques acting on the wheels are given by Eqs. (1.10). However, the 
simulators also include the possibility of setting a maximum torque τmax which cannot 

be exceeded, regardless of the output torque τout obtained from Eqs. (1.10). 

In addition, GPRSim (but not ARSim) also allows simulation of velocity- 
regulated motors. Unlike the voltage signal used in the standard DC motor, a 
velocity-regulated motor takes as input a desired reference speed vref for the wheel 
attached to the motor axis. The robot then tries to reach this speed value, using 
proportional control. The actual output torque of a velocity-regulated motor is given 
by 

τ  = K (vref − v) (3.15) 

In this model, a change in vref generates an immediate change in the torque. In a real 
motor, the torques cannot change instantaneously.  However, Eq. (3.15) 
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Figure 3.5: Left panel: A simulated robot (from GPRSim), consisting of more than 100 objects. 

Right panel: An example (in blue) of a collision geometry. 

 

usually provides a sufficiently accurate estimate of the torque. As in the case of the 
standard DC motor, there is also a maximum torque τmax for velocity- regulated motors. 

Note that, if velocity-regulated motors are to be used, the robot must be equipped 
with wheel encoders to allow the computation of odometric esti- mates of the wheel 
speeds. 

 
3.2.5 Collision checking 

A real robot should normally be very careful not to collide with an obstacle (or, worse, a 
person). In simulations, however, one may allow collisions, for exam- ple during 
simulations involving stochastic optimization, where the robotic brains in the early 
stages of an optimization run may be unable to avoid colli- sions. In any case, 
collisions should, of course, be detected. 

In GPRSim the concept of a collision geometry is used when checking for 
collisions. The collision geometry is a set of vertical planes in which the body of the 
robot should be contained. It would be possible to check collisions be- tween the 
boxes and cylinders constituting the (simulated) body of the robot. However, it is 
common that the robotic body consists of a very large number of objects, making 
collision-checking very slow indeed. Thus, instead, a sim- pler collision geometry is 
used. An example is given in Fig. 3.5. The left panel shows a simulated robot 
(consisting of more than 100 separate objects), and the right panel shows (in blue) a 
collision geometry for the same robot. 

By contrast, in ARSim the simulated robot is always represented as a circu- lar 
disc. Thus, the collision detection method simply checks for intersections 
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between the circular body of the robot and any line representing a side of an arena 
object. 

 
3.2.6 Motion 

Once the torques acting on the wheels have been generated, the motion of the robot 
is obtained through numerical integration of Eqs. (2.31) and (2.32). In both GPRSim 
and ARSim, the integration is carried out using simple  first- 

order (Euler) integration.   For each time step,  V̇   and ϕ̈  are computed using 

Eqs. (2.31) and (2.32), respectively.  The new values V j and ϕ̇j of V  and ϕ̇  are then 
computed as 

V j = V + V̇    ∆t, (3.16) 

ϕ̇j = ϕ̇ + ϕ̈∆t, (3.17) 

where ∆t is the time step length (typically set to 0.01 s). The value of ϕ is then updated, 
using the equation 

 

ϕj = ϕ + ϕ̇j∆t, (3.18) 

The cartesian components of the velocity are then obtained as 

Vx
j  = V j cos ϕ, (3.19) 

Vy
j  = V j sin ϕ. (3.20) 

Finally, given Vx
j and Vy

j, the new positions Xj and Y j can be computed as 

Xj = X + Vx
j∆t, (3.21) 

Y j = Y  + Vy
j∆t. (3.22) 

In addition, if wheel encoders are used, both GPRSim and ARSim also keep track of 
the rotation of each wheel, for possible use in odometry (if available). 

 
3.2.7 Robotic brain 

While the physical components of a robot, such as its sensors and motors, of- ten 
remain unchanged between simulations, the robotic brain must, of course, be adapted 
to the task at hand. Robotic brains can be implemented in many different ways. 

In behavior-based robotics (BBR) the brain of a robot is built from a reper- toire 

(i.e. a set) of basic behaviors, as well as a decision-making procedure, selecting which 

behavior(s) to activate at any given time. In the General- purpose robotic brain 

structure (GPRBS), developed in the author’s research group, the robotic brain is 

built from a set of brain processes, some of which 
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are motor behaviors (that make use of the robot’s motors) and some of which are 
cognitive processes, i.e. processes that do not make use of any motors. In addition, 
GPRBS features a decision-making system based on the concept of utility. One of the 
main properties of GPRBS is that this structure allows sev- eral processes to run in 
parallel, making it possible to build complex robotic brains. In fact, the specific aim of 
the development of GPRBS is to move be- yond the often very simple robotic brains 
defined within standard BBR. 

In GPRBS, all brain processes are specified in a standardized format, which 
simplifies the development of new brain processes, since many parts of an already 
existent process often can be used when writing a new process. How- ever, at the 
same time, GPRBS (as implemented in GPRSim) is a bit complex to use, especially 
since it is intended for use in research, rather than as an edu- cational tool. Thus, in 
this course, ARSim will be used instead. This simulator allows the user to write simple 
brain processes (as well as a basic decision- making system) in any desired format 
(i.e. without using GPRBS). Methods for writing brain processes will be described 
further in a later chapter. 

 
3.3 Brief introduction to ARSim 

The simplest way to acquaint oneself with ARSim is to run and analyze the test program 
distributed with the program. In order to do so, start Matlab, move to the right directory 
and write 

 
>> TestRunRobot 

 

and press return. The robot appears in a quadratic arena with four walls and two 
obstacles, as shown in Fig. 3.6. The robot is shown as a circle, and its di- rection of 
motion is indicated by a thin line. The IR sensors (of which there are two in the default 
simulation) are shown as smaller circles. The rays used for determining the sensor 
readings (three per sensor, per default) are shown as lines emanating from the 
sensors. In the default simulation, the robot executes 1,000 time steps of length 0.01 
s, unless it is interrupted by a collision with an obstacle or a wall. 

The flow of the simulation basically follows the structure given in Fig. 3.1. The first 
lines of code in the TestRunRobot.m file are devoted to adding the various ARSim 
function libraries to Matlab’s search path. The arena objects are then created and 
added to the arena. Next, the brain of the robot is created (by a call to CreateBrain), 
and the setup is completed by creating the sensors and motors, and adding them to 
the robot. 

Before the actual simulation starts, the robot’s position, heading, velocity, and 
angular speed are set, and the plot of the arena (including the robot) is created. 
Optionally, a variable motionResults, storing information about 
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Figure 3.6: A typical screenshot from an ARSim simulation. The black lines emanating from 

the two IR proximity sensors of the robot are the rays used for determining sensor readings. 

 
the robot’s motion, can be created. 

ARSim then executes the actual simulation. Each time step begins with the 
sensors being read. First, the readings of all ray-based sensors (a category in which 
only IR sensors have been implemented in ARSim, so far) are obtained. Next, the 
odometer and compass readings are obtained (provided, of course, that the robot is 
equipped with those sensors. Next, the robotic brain processes the sensory 
information (by executing the BrainStep function), producing motor signals, which 
are used by the MoveRobot function. Finally, a collision check is carried out. 

In normal usage, only a few of ARSim’s functions need be modified, namely 
CreateBrain, in which the parameters of the brain are set, BrainStep, which 
determines the processing carried out by the robotic brain, and, of course, the main file 
(i.e. TestRunRobot in the default simulation), where the setup of the arena and the 
robot are carried out. Normally, no other Matlab func- tions should be modified unless, 
for example, one wants to modify the plot procedure. 

Note that, by default, the rays involved in the computation of the IR sensor readings 
are not plotted. In order to plot the sensor rays, one must set the pa- rameter 
ShowSensorRays to true. If the robot is equipped with an odome- ter, one can plot 
also the position and heading estimated by the odometer, by setting the parameter 
ShowOdometricGhost to true. A brief description of the Matlab functions contained 
in ARSim is given in Appendix A. 
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6 
Exploration, navigation, and localization 

 
In the previous chapter, the concept of robotic behaviors was introduced and 
exemplified by means of some basic motor behaviors. Albeit very simple, such 
behaviors can be tailored to solve a variety of tasks such as, for example, wan- dering, 
wall following and various forms of obstacle avoidance. However, there are also clear 
limitations. In this chapter, some more advanced motor behaviors will be studied. First, 
behaviors for exploration and navigation will be considered. Both of these two types 
of behavior require accurate pose esti- mates for the robot. It is assumed that the robot 
is equipped with a (cognitive) Odometry brain process, providing continuous pose 
(and velocity) estimates. As mentioned earlier, such estimates are subject to 
odometric drift, and there- fore an independent method for localization (i.e. odometric 
recalibration) is always required in realistic applications. Such a method will be 
studied in the final section of this chapter. However, exploration and navigation are im- 
portant problems in their own right and, in order to first concentrate on those problems, 
it will thus (unrealistically) be assumed,  in the first two sections  of the chapter, that 
the robot obtains perfect, noise-free pose estimates using odometry only. 

 

6.1 Exploration 

Purposeful navigation requires some form of map of the robot’s environment. In many 
cases, however, no map is available a priori. Instead, it is the robot’s task to acquire 
the map, in a process known as simultaneous localization and mapping (SLAM). 
In (autonomous) SLAM, a robot is released in an unknown arena, and it is then 
supposed to move in such a way that, during its motion, its long-range sensors 
(typically an LRF) covers every part of the arena, so that 
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the sensor readings can be used for generating a map. This is a rather diffi- cult task 
since, during exploration and mapping, the robot must keep track  of its position using, 
for odometric recalibration, the (incomplete, but grow- ing) map that it is currently 
generating. SLAM is an active research topic, for which many different methods have 
been suggested. A currently popular ap- proach is probabilistic robotics, in which 
the robot maintains a probability density function from which its position is inferred. 
However, SLAM is be- yond the scope of this text. Instead, the simpler, but still 
challenging, topic of exploration given perfect positioning (as mentioned in the 
introduction to this chapter) will be considered. 

Exploration can be carried out for different reasons. In some applications, such as 
lawn mowing, vacuum cleaning, clearing mine fields etc., the robot must physically 
cover as much as possible of the floor or ground in its envi- ronment. Thus, the robot 
must carry out area coverage. In some applications, 
e.g. vacuum cleaning, it is often sufficient that the robot carries out a more or less 
aimless wandering that, eventually, will make it cover the entire floor. In other 
applications, such as mapping, it is unnecessary for the robot to physi- cally visit every 
spot in the arena. Instead, what matters is that its long-range sensor, typically an LRF 
(or a camera), is able to sense every place in the arena at some point during the 
robot’s motion. The problem of exploring an arena such that the long-range sensor(s) 
reach all points in the arena will here be referred to as sensory area coverage. 

Exploring an arena, without any prior knowledge regarding its structure, is far from 
trivial. However, a motor behavior (in the GPRBS framework) for sensory area 

coverage has recently (2009) been implemented1. This Exploration behavior has been 
used both in the simulator GPRSim and in a real robot (as a part of SLAM). In both 
cases, the robot is assumed to be equipped with an LRF. The algorithm operates as 
follows: A node is placed at the current (esti- mated) position of the robot. Next, the 
robot generates a set of nodes at a given distance (D) from its current position 
(estimated using the Odometry process). Before any nodes are placed, the robot used 
the LRF (with an opening (sweep) angle α) to find feasible angular intervals for node 
placement, i.e. angular in- tervals in which the distance to the nearest obstacle 
exceeds D + ∆, where ∆ is a parameter measuring the margin between a node and 
the nearest obsta- cle behind the node. The exact details of the node placement 
procedure will not be given here. Suffice it to say that, in order to be feasible, an 
angular in- terval must have a width γ exceeding a  lower limit γmin  in order  for a  node 
to be placed (at the center of the angular interval). Furthermore, if the width of a 
feasible angular interval is sufficiently large, more than one node may be placed in 
the interval. An illustration of feasible angular intervals and node 

 

1See Wahde, M. and Sandberg, D. An algorithm for sensory area coverage by mobile robots oper- 

ating in complex arenas, Proc. of AMiRE 2009, pp. 179-186, 2009. 
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Figure 6.1: An illustration of the node placement method in the Exploration behavior. The 

left panel shows the distances obtained over the 180 degree opening angle of the LRF (note 

that individual rays are not shown). The inner semi-circle has a radius of D (the node 

placement distance) whereas the radius of the outer semi-circle is D + ∆. The right panel 

shows the re- sulting distribution of nodes. Note that one of the two feasible angular intervals 

is sufficiently wide to allow two nodes to be placed. 

 
placement is given in Fig. 6.1. 

At this point, the reader may ask why nodes are placed at a distance D 

from the current node, rather than as far away as possible (minus the margin 
∆). The reason is that, in practical use, one cannot (as is done here) assume that the 
odometry provides perfect pose estimates. Since the Exploration behavior is normally 
used in connection with SLAM, for which accurate positioning is crucial when building 
the map (a process involving alignment of consecutive laser scans), one cannot move 
a very large distance between consecutive laser snapshots. Thus, even though the 
typical range R of an LRF is around 4-10 m or more, the distance D is typically only 
around 1 m. 

An additional constraint on node placement regards the separation (con- cerning 
distances, not angles) between nodes. A minimum distance of d (typ- ically set to 0.75 
m or so) is enforced. The requirement that nodes should be separated by a distance 
of at least d makes the algorithm finite: At some point, it will no longer be possible to 
place new nodes without violating this con- straint. Thus, when all nodes have been 
processed (i.e. either having been vis- ited or deemed unreachable, see below), and 
no further nodes can be added, the exploration of the arena is complete. 

Returning to the algorithm, note that the initial node, from which the robot starts its 
exploration, is given the status completed (implying that this node has been reached) 
and is referred to as the active node. All newly generated nodes are given the status 
pending. The robot also generates paths to the pending 
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Figure 6.2: The early stages of a run using the exploration algorithm, showing a robot ex- 

ploring a single rectangular room without a door. The arena contains a single, low obstacle, 

which cannot be detected using the LRF (since it is mounted above the highest point of the 

obstacle). In each panel, the target node is shown with two thick circles, pending nodes are 

shown as a single thick circle, completed nodes as a filled disc, and unreachable nodes as a filled 

square. Upper left panel: The robot, whose size is indicated by a thin open circle, starts at 

node 1, generating three new pending nodes (2, 3, and 4). Upper right panel: Having reached 

node 4, the robot sets the status of that node to completed, and then generates new pending 

nodes. Lower left panel: Here, the robot has concluded (based on IR proximity readings) that 

node 6 is unreachable, and it therefore selects the nearest pending node (5, in this case) based 

on path distance, as the new target node. Lower right panel: Having reached node 5, due to 

the minimum distance requirement (between nodes) the robot can only generate one new 

node (7). It rotates to face that node, and then moves towards it etc. 

 

nodes. For example, if the robot is located at node 1 and generates three pend- ing 
nodes (2,3 and 4), the paths will be (1, 2), (1, 3) and (1, 4). The robot next selects the 
nearest node, based on the path length as the target node. In many cases (e.g. when 
more than one node can be placed), several nodes are at the same (estimated) 
distance from the robot. In such cases, the robot (arbitrarily) 
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selects one of those nodes as the target node. For the paths just described, the path 
length equals the cartesian distance between the nodes. If a path con- tains more 
than two elements, however, the path length will differ from the cartesian distance, 
unless all the nodes in the path lie along a straight line. The path length is more 
relevant since, when executing the exploration algorithm described here, the robot 
will generally follow the path, even though direct movement between the active node 
and a target node is also possible under certain circumstances; see below. 

Next, the robot rotates to face the target node, and then proceeds towards it; see 
the upper left panel of Fig. 6.2. During the motion, one of two things can happen: 
Either (i) the robot reaches the target node or, (ii) using the output from a Proximity 
detection brain process (assumed available), it concludes that the target node cannot 
be reached along the current path. Note that, in order for the Proximity detection brain 
process to be useful, the sensors it uses should be mounted at a different (smaller) 
height compared to the LRF. 

In case (i), illustrated in the upper right panel of Fig. 6.2, once the target node has 
been reached, it is given the status completed and is then set as the new active node. 
At this point, the paths to the remaining pending nodes are updated. Continuing with 
the example above, if the robot moves to node 4, the paths to the other pending nodes 
(2 and 3) will be updated to (4, 1, 2) and (4, 1, 3). Furthermore, having reached node 
4, the robot generates new pend- ing nodes. Note that the robot need not be located 
exactly on node 4; instead, a node is considered to be reached when the robot passes 
within a distance a from it. The new nodes are added as described above. The 
minimum distance requirement between added nodes (see above) is also enforced. 
Proceeding with the example, the robot might, at this stage, add nodes 5 and 6, with 
the paths (4, 5) and (4 ,6). Again, the robot selects the nearest node based on the 
path length, rotates to face that node, and then starts moving towards it etc. Note that 
the robot can (and will) visit completed nodes more than once. How- ever, by the 
construction described above, only pending nodes can be target nodes. 

In case (ii), i.e. when the target node cannot be reached, the node is assigned the 
status unreachable, and the robot instead selects another target node and proceeds 
towards it, along the appropriate path. This situation is illustrated in the lower left panel 
of Fig. 6.2: Here, using its Proximity detection brain process, the robot concludes that 
it cannot reach node 6. It therefore marks this node unreachable, sets it as the active 
node, and then sets the nearest pending node as the new target, in this case node 5. 
One may wonder why case (ii) can oc- cur, since the robot uses the LRF before 
assigning new nodes. The reason, of course, is that the LRF (which is assumed to be 
two-dimensional) only scans the arena at a given height, thus effectively only 
considering a horizontal slice of the arena. A low obstacle may therefore be missed, 
until the robot comes sufficiently close to it, so that the Proximity detection brain 
process can detect it. 
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Figure 6.3: An illustration of a problem that might occur during exploration. Moving in one 

particular direction (left panel) the robot is able to place and follow the nodes shown. However, 

upon returning (right panel), the robot may conclude that it will be unable to pass the node 

near the corner, due to the proximity detection triggered as the robot approaches the node, 

with the wall right in front of it. 

 

Note that unreachable nodes are exempt from the minimum distance require- ment. 
This is so, since a given node may be unreachable from one direction but perhaps 
reachable from some other direction. Thus, the exploration algorithm is allowed to 
place new pending nodes arbitrarily close to unreachable nodes. 

One should note that robust exploration of any arena is more difficult than it might 
seem. An example of a problem that might occur is shown in Fig. 6.3. Here, the robot 
passes quite near a corner on its outbound journey (left panel), but no proximity 
detection is triggered. By contrast, upon returning (right panel) a proximity detection 
is triggered which, in turn, may force the robot to abandon its current path. In fact, the 
Exploration behavior contains a method (which will not be described here) for avoiding 
such deadlocks. In the (very rare) cases in which even the deadlock avoidance 
method fails, the robot sim- ply stops, and reports its failure. 

Because of the path following strategy described above, the robot may sometimes 
take an unnecessarily long path from the active node to the tar- get node. However, 
this does not happen so often since, in most cases, the robot will proceed directly to 
a newly added node, for which the path length is the same as the cartesian distance. 
However, when the robot cannot place any more nodes (something that occurs, for 
example, when it reaches a cor- ner), a distant node may become the target node. 
Therefore, in cases where the path to the target node differs from the direct path, the 
robot rotates to face the target node (provided that it is located within a distance L, 
where L should be smaller than or equal to the range R of the LRF). Next, if the robot 
concludes (based on its LRF readings) that it can reach the target node, it then 
proceeds directly towards it, rather than following the path. However, also in this case, 
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Figure 6.4: Left panel: The robot in its initial position in an unexplored arena. Right panel: 

The final result obtained after executing the Exploration behavior. The completed (visited) 

nodes are shown as green dots, whereas the (single) unreachable node is shown as a red dot. 

The final target node (the last node visited) is shown as a blue dot. In this case, the robot 

achieved better than 99.5% sensory area coverage of the arena. 

 
 

it is possible that a (low) obstacle prevents the robot from reaching its target, in which 
case the robot instead switches to following the path as described above. 

The robot continues this cycle of node placement and movement between nodes, 
until all nodes have been processed (i.e. either having been visited or deemed 
unreachable), at which point the exploration of the arena is complete. The Exploration 
behavior consists of an FSM with 17 states, which will not be 
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Figure 6.5: Three examples of grids that can be used in connection with grid-based naviga- 

tion methods. In the left panel, the nodes are not equidistant, unlike the middle panel which 

shows a regular lattice with equidistant nodes. The regular lattice can also be represented as 

grid cells, as shown in the right panel. Note that the right and middle panels show equivalent 

grids. 

 
described in detail here. A performance example is shown in Fig. 6.4.  The  left panel 
shows the robot at its starting point in a typical office arena. The right panel shows 
the final result, i.e. the path generated by the robot. The completed (visited) 
exploration nodes are shown as green dots, whereas the unreachable nodes (only 
one in this case) are shown as red dots. The final target node is shown as a blue dot. 
Note that the robot achieved a sensory area coverage (at the height of its LRF) of 
more than 99.5% during exploration. 

 
6.2 Navigation 

In this section, it will again be assumed that the robot has access to accurate 
estimates of its pose (from the Odometry brain process), and the question that will be 
considered is: Given that the robot knows its pose and velocity, how can it navigate 
between two arbitrary points in an arena? In the robotics liter- ature, many methods 
for navigation have been presented, three of which will be studied in detail in this 
section. 

 
6.2.1 Grid-based navigation methods 

In grid-based navigation methods, the robot’s environment must be covered with 
an (artificial) grid, consisting of nodes (vertices) and edges connecting the nodes. 
The grid may have any shape, as illustrated in the left panel of  Fig. 6.5, i.e. it need 
not be a rectangular lattice of the kind shown in the middle panel. However, if the grid 
happens to be a rectangular lattice, it is often rep- resented as shown in the right 
panel of the figure, where the nodes have been replaced by cells, and the edges are 

not shown2. Furthermore, the edges must be associated with a (non-negative) cost, 
which, in many cases is simply taken 

 

2Note that in the cell representation in the right panel, the sides of each cell are not edges: The 

edges connect the centers of the grid cells to each other, as shown in the middle panel. 
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Figure 6.6: Left panel: An example of automatic grid generation. The walls of the arena are 

shown as green thin lines. The black regions represent the forbidden parts of the arena, either 

unreachable locations or positions near walls and other obstacles. The grid cell boundaries 

are shown as thick yellow lines. Right panel: An example of a path between two points in  the 

arena. The basic path (connecting grid cells) was generated using Dijkstra’s algorithm (see 
below). The final path, shown in the figure, was adjusted to include changes of directions 

within grid cells, thus minimizing the length of the path. Note that all cells are convex, so that 

the path segments within a cell can safely be generated as straight lines between consecutive 

waypoints. 

 
 

as the euclidean distance between the nodes. Thus, for example, in the grids shown 
in the middle and right panels of Fig. 6.5, the cost of moving between adjacent nodes 
would be equal to 1 (length unit), whereas, in the grid shown in the left panel the cost 
would vary depending on which nodes are involved. 

An interesting issue is the generation of a navigation grid, given a two- 
dimensional map of an arena. This problem is far from trivial, especially in complex 
arenas with many walls and other objects. Furthermore, the grid gen- eration should 
take the robot’s size (with an additional margin) into account, in order to avoid 
situations where the robot must pass very close to a wall or some other object. The 
grid-based navigation methods described below gener- ate paths between grid cells. 
On a regular grid with small, quadratic cells (as in the examples below) it is sometimes 
sufficient to let the robot move on straight lines between the cell centers. However, the 
generated path may then become somewhat ragged. Furthermore, in more complex 
grids, where the cells are of different size, following a straight line between cell centers 
may result in an unnecessarily long path. Thus, in such cases, the robot must normally 
modify its heading within a cell, in order to find the shortest path. 

When generating a grid, one normally requires the grid cells to be convex, 
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1. Place the robot at the start node, which then becomes the current node. 

Assign the status unvisited to all nodes. 

2. Go through each of the cells ai that are (i) unvisited and (ii) directly reach- able 

(via an edge) from the current node c. Such nodes are referred to as neighbors 

of the current node. Compute the cost of going from ai to the target node t, 

using the heuristic f (ai). 

3. Select the node amin associated with the lowest cost, based on the cost values 

computed in Step 2. 

4. Set the status of the current node c as visited, and move to amin which then 

becomes the current node. 

5. Return to Step 2. 

 
Figure 6.7: The best-first search algorithm. 

 
so that all points on a straight line between any two points in the cell also are part of 
the cell. One way of doing so is to generate a grid consisting of trian- gular cells, which 
will all be convex. However, such grids may not be optimal: The pointiness of the grid 
cells may force the robot to make many unnecessary (and sharp) turns. An algorithm 
for constructing, from a map, a general grid consisting of convex cells with four or 

more sides (i.e. non-triangular) exists as well3. Fig. 6.6 shows an example of a grid 
generated with this algorithm. Because of its complexity, the algorithm will not be 
considered in detail here. Instead, in the examples below, we shall consider grids 
consisting of small quadratic cells, and we will neglect changes of direction within grid 
cells. 

 
Best-first search algorithm 

In best-first search (BFS) algorithm the robot moves greedily towards the tar- get, as 
described in Fig. 6.7. As can be seen, the BFS method chooses the next node based 
on the (estimated) cost of going from that node n to the goal, which is estimated using 
a heuristic function f (n). f (n) can be chosen in different ways, the simplest being to 
use the euclidean distance between the node un- der consideration and the target. 
However, in that case, the BFS method may, in fact, get stuck. A more sophisticated 
heuristic function may, for example, add a penalty for each obstacle encountered on 
a straight-line path from the node under consideration to the target node. 

The path can be generated by simply storing the list of visited nodes during 

3See Wahde, M., Sandberg, D., and Wolff, K. Reliable long-term navigation in indoor environ- 

ments, In: Topalov, A.V. (Ed.), Recent advances in Mobile Robots, InTech, 2011, pp. 261–286. 
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Figure 6.8: Two examples of paths generated using the BFS algorithm. The cells (nodes) that 

were checked during path generation are shown in light green, whereas the actual path is 

shown in dark green and with a solid line. The yellow cell is the start node and the white cell 

is the target node. 

 
path generation. The BFS method is very efficient in the absence of obstacles or when 
the obstacles are few, small, and far apart. An example of such a path generated with 
BFS is shown in the left panel of Fig. 6.8. As can be seen, the robot quickly moves 
from the start node to the target node.   However,    if there are extended obstacles 
between the robot’s current position and the target node, the BFS algorithm will not 
find the shortest path, as shown in the right panel of Fig. 6.8. Because of its greedy 
approach to the target, the robot will find itself in front of the obstacle, and must then 
make a rather long detour to arrive at the target node. 

 
Dijkstra’s algorithm 

Like BFS, Dijkstra’s algorithm also relies on a grid in which the edges are as- 
sociated with non-negative costs. Here, the cost will simply be taken as the euclidean 
distance between nodes. Instead of focusing on the (estimated) cost of going from a 
given node to the target note, Dijkstra’s algorithm considers the distance between the 
start node and the node under consideration, as de- scribed in Fig. 6.9. In Step 2, the 
distance from the start node s to any node ai is computed using the (known) distance 
from the initial node to the current node c and simply adding the distance between c and 
ai. This algorithm will check a large number of nodes, in an expanding pattern from the 
start node, as shown in Fig. 6.10. In order to determine the actual path to follow, 
whenever a new node a is checked, a note is made regarding the predecessor node 
p, i.e. the 
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1. Place the robot at the start node s, which then becomes the current node. 

Assign the distance value 0 to the start node, and infinity to all other nodes (in 

practice, use a very large, finite value). Set the status of all nodes to unvisited. 

2. Go through all the unvisited, accessible (i.e. empty) neighbors ai of the current 

node c, and compute their distance d from the start node s. If d is smaller than 

the previously stored distance di (initially infinite, see Step 1), then (i) update 

the stored distance, i.e. set di = d and (ii) assign the current node as the 

predecessor node of ai. 

3. After checking all the neighbors of the current node, set its status to vis- ited. 

4. Select the node (among all the unvisited, accessible nodes in the grid) with the 

smallest distance from the start node, and set it as the new cur- rent node. 

5. Return to Step 2, unless the target has been reached. 

6. When the target has been reached, use the predecessor nodes to trace a path 

from the target node to the start node. Finally, reverse the order of the nodes 

to find the path from the start node to the target node. 

 
Figure 6.9: Dijkstra’s algorithm. 

 
 

node that was the current node when checking node a. When the target has been 
found, the path connecting it to the initial node can be obtained by going through the 
predecessor nodes backwards, from the target node to the initial node. 

Unlike the BFS algorithm, Dijkstra’s algorithm is guaranteed to find the shortest 

path4 from the start node to the target node. However, a drawback with Dijkstra’s 
algorithm is that it typically searches many nodes that, in the end, turn out to be quite 
irrelevant. Looking at the search patterns in Figs. 6.8 and 6.10, one may hypothesize 
that a combination of the two algorithms would be useful. Indeed, there is an algorithm, 
known as A* that combines the BFS and Dijkstra algorithms. Like Dijkstra’s algorithm, 
A* is guaranteed to find the shortest path. Moreover, it does so more efficiently than 
Dijkstra’s algorithm. However, A* is beyond the scope of this text. 

 
 
 

4There may be more than one such path: Dijkstra’s algorithm will select one of them. 
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Figure 6.10: Two examples of paths generated using Dijkstra’s algorithm. The cells (nodes) 
that were checked during path generation are shown in light green, whereas the actual path 

is shown in dark green and with a solid line. The yellow cell is the start node and the white cell 

is the target node. 

 
6.2.2 Potential field navigation 

Unlike the algorithms described above, the potential field method does not require 
a grid. In the potential field method, a robot obtains its desired direc- tion of motion as 
the negative gradient of an artificial potential field, generated by potentials assigned to 
the navigation target and to objects in the arena. 

 
Potential fields 

As shown in Fig. 6.11, a potential field can be interpreted as a landscape with hills 
and valleys, and the motion of a robot can be compared to that of a ball rolling through 
this landscape. The navigation target is assigned a potential corresponding to a gentle 
downhill slope, whereas obstacles should generate potentials corresponding to steep 
hills. 

In principle, a variety of different equations could be used for defining dif- ferent 
kinds of potentials. An example, namely a potential with ellipsoidal equipotential 
surfaces, and exponential variation with (ellipsoidal) distance from the center of the 
potential, takes the mathematical form 

−( x−xp )
2

−( y−yp )
2

 

φ(x, y; xp, yp, α, β, γ) = αe β γ , (6.1) 

 

where (x, y) is the current (estimated) position at which the potential is calcu- lated, 
(xp, yp) is the position of the object generating the potential, and α, β and γ are constants 
(not to be confused with the constants defined in connection 
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Figure 6.11: A potential field containing a single obstacle and a navigation goal. 

 
with the equations of motion in Chapter 2 and the sensor equations in Chapter 3). Now, 
looking at the mathematical form of the potentials, one can see that an attractive 
potential (a valley) is formed if α is negative, whereas a positive value of α will generate 
a repulsive potential (a hill). 

Normally, the complete potential field contains many potentials of the form given in 
Eq. (6.1), so that the total potential becomes 

 

k 

Φ(x, y) = φi(x, y; xpi, ypi, αi, βi, γi), (6.2) 

i=1 

 

where k is the number of potentials. An example of a potential field, for a simple arena 
with four central pillars, is shown in Fig. 6.12. 

 
Navigating in a potential field 

Once the potential field has been defined, the desired direction of motion r̂ of the robot 
can be computed as the negative of the normalized gradient of the field 

r̂ = 
∇Φ 

 ∂Φ  ∂Φ 

  ∂x   ∂y  

 
 

(6.3) 

−
|∇Φ| 

≡ − .. 
∂Φ 

Σ2 
+ 

. 
∂Φ 

Σ2 

∂x ∂y 
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Figure 6.12: An illustration of potential field navigation in GPRSim. Upper left panel: A simple 

arena, with a robot following a potential field toward a target position in the upper left corner 

of the arena. Upper right panel: The corresponding potential field, generated by a total of 
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nine potentials (one for the target, one for each of the walls, and one for each pillar). Lower 

left panel: A contour plot of the potential field, in which the target position can be seen in the 

upper left corner. Lower right panel: The trajectory followed by the robot. Note that, in this 

simulation, the odometric readings were (unrealistically) noise-free. 
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In order to integrate the equations of motion of the robot, it is not sufficient only to 
know the desired direction: The magnitude of the force acting on the robot must also 
be known. In principle, the negative gradient of the potential field could be taken 
(without normalization) as the force acting on the robot, providing both magnitude and 
direction. However, in that case, the magni- tude of the force would vary quite strongly 
with the position of the robot, making the robot a dangerous moving object (if it is 
large). Thus, the poten- tial field is only used for providing the direction, as in Eq. (6.3). 
The robot’s speed v (i.e. the magnitude of its velocity vector v) can be assigned in 
various ways. For example, one may use proportional control to try to keep the speed 

constant5. 

An example of a trajectory generated during potential field navigation is shown in 
the lower right panel of Fig. 6.12. In the experiment in which this figure was generated, 
the noise in the odometric readings was (unrealistically) set to zero, since the aim here 
is simply to illustrate potential field navigation. However, in a realistic application, one 
would have to take into account the fact that the robot’s estimate of its pose will never 
be error-free. Thus, when setting up a potential field, it is prudent to make the 

potentials slightly larger6 than the physical objects that they represent. At the same 
time, in narrow corridors, one must be careful not to make the potentials (for walls on 
opposite sides of the corridor, say) so wide that the robot will be unable to pass. 

In fact, the definition of a potential field for a given arena is something of an art. In 
addition to the problem of determining the effective extension of the potentials, one 
also has to decide whether a given object should be repre- sented by one or several 
potentials (for instance of the form given in Eq. (6.1)). For example, an extended object 
(for example, a long wall) can be represented as a single potential (typically with very 
different values of the parameters β and γ), but it can also be represented as a 
sequence of potentials. In complex environments, one may resort to stochastic 
optimization of the potential field, as well as the details of the robot’s motion in the 

field7. 

 
Aspects of potential field navigation 

A gradient-following method, such as the potential field method, always suf- fers the 
risk of encountering local minima in the field. Of course, in potential 

 

5The procedure for assigning the robot’s speed in potential field navigation will be de- scribed 

below. 

6Of course, since the exponential potentials defined in Eq. (6.1) have infinite extension, 

the corresponding force never drops exactly to zero, but beyond a distance of a few d, where 

d = max(β, γ), the force is negligible. 

7For an example of such an approach, see Savage et al., Optimization of waypoint-guided potential 

field navigation using evolutionary algorithms, Proceedings of the 2004 IEEE/RSJ Inter- national 

Conference on Intelligent Robots and Systems (IROS 2004), 3463-3468, 2004. 
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Figure 6.13: The locking phenomenon. Following the gradient of the potential field the robot, 

whose trajectory is shown as a sequence of black dots, moves along the x-axis toward the goal, 

located at (2, 0). However, because of the local minimum in the potential field, the robot 

eventually gets stuck. 

 

 
field navigation, the goal is to reach the local minimum represented by the navigation 
target. However, depending on the shape of the arena (and there- fore the potential 
field), there may also appear one or several unwanted local minima in the field, at 
which the robot may become trapped. 

This is called the locking phenomenon and it is illustrated in Fig. 6.13. Here, a 
robot encounters a wedge-shaped obstacle represented by three poten- tials. At a 
large distance from the obstacle, the robot will be directed toward the goal potential, 
which is located behind the obstacle as seen from the start- ing position of the robot. 
However, as the robot approaches the obstacles their repulsive potentials will begin to 
be noticeable. Attracted by the goal, the robot will thus eventually find itself stuck inside 
the wedge, at a local minimum of the potential. 

In order to avoid locking phenomena, the path between the robot and the goal can 
be supplied with waypoints, represented by attractive potentials (for example, of the 
form given in Eq. (6.1)) with rather small extension. Of course, the introduction of 
waypoints leads to the problem of determining where to 
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∆V 

 

put them. An analysis of such methods will not be given here8. Suffice it to say that 
the problem of waypoint placement can be solved in various ways to aid the robot in 
its navigation. A waypoint should be removed once the robot has passed within a 
distance L from it, to avoid situations in which the robot finds itself stuck at a waypoint. 

The potential field method also has several advantages, one of them being that 
the direction of motion is obtained simply by computing the gradient of the potential 
field at the current position, without the need to generate an en- tire path from the 
current position to the navigation target. Furthermore, the potential field is defined for 
all points in the arena. Thus, if the robot tem- porarily must suspend its navigation (for 
example, in order to avoid a moving obstacle), it can easily resume the navigation 
from wherever it happens to be located when the Obstacle avoidance behavior is 
deactivated. 

In the discussion above, only stationary obstacles were considered. Of course, 
moving obstacles can be included as well. In fact, the potential field method is 
commonly used in conjunction with, say, a grid-based navigation method, such that 
the latter generates the nominal path of the robot, whereas the potential field method 
is used for adjusting the path to avoid moving ob- stacles. However, methods for 
reliably detecting moving obstacles are beyond the scope of this text. 

 
Using the potential field method 

As mentioned above, the potential field only provides the current desired di- rection of 
motion. In order to specify a potential field navigation behavior com- pletely, one must 
also provide a method for setting the speed of the robot. This can be done as follows: 
Given the robot’s estimated (from odometry) angle of heading ϕest and the desired 
(reference) direction ϕref (obtained from the po- tential field), one can form the quantity 
∆ϕ as 

∆ϕ = ϕref − ϕest. (6.4) 

The desired speed differential ∆V (the difference between the right and left wheel 
speeds) can then be set according to 

∆V  = KpVnav∆ϕ, (6.5) 

where Kp is a regulatory constant (P-regulation is used) and Vnav is the (de- sired) speed 
of the robot during normal navigation. Once ∆V has been com- puted, reference 
speeds are sent to the (velocity-regulated) motors according to 

vL = Vnav − , (6.6) 

2 
 

 

8See, however, the paper by Savage et al. mentioned in Footnote 6. 



CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 139
 

139  

− 

 

vR = Vnav + ∆V 
, (6.7) 

2 
where vR and vL are the reference speeds of the left and right wheels, respec- tively. 
Note that one can of course only set the desired (reference) speed values; the actual 
speed values obtained depend on the detailed dynamics of the robot and its motors. 

If the reference angle differs strongly from the estimated heading (which can 
happen, for example, in situations where the robot comes sufficiently close to an 
obstacle whose potential generates a steep hill), the robot may have to suspend its 
normal navigation and instead carry out a pure rotation, setting vL = Vrot, vR = Vrot for a 
left (counterclockwise) rotation, where Vrot is the ro- tation velocity, defined along with 

Vnav (and the other constants) during setup. In case the robot should carry out a 
clockwise rotation, the signs are reversed. The direction of rotation is, of course, 
determined by the sign of the differ- ence between the reference angle and the 
(estimated) heading. In this case, the robot should turn until the difference between the 
reference angle and the esti- mated heading drops below a user-specified threshold, 
at which point normal navigation can resume. 

 
6.3 Localization 

In Sects. 6.1 and 6.2, it was (unrealistically) assumed that the robot’s odome- try 
would provide perfect estimates of the pose. In reality, this will never be the case, and 
therefore the problem of recalibrating the odometric readings, from time to time, is a 
fundamental problem in robotics. Doing so requires a method for localization 
independent from odometry, and such methods usu- ally involve LRFs (even though 
cameras are also sometimes used), sensors that are difficult to simulate in ARSim 
(because of the large number of rays which would slow down the simulation 
considerably). Therefore, in this section, lo- calization will be described as it is 
implemented in the simulator GPRSim and in GPRBS, where LRFs are used. 

Robot localization requires two brain processes: The cognitive Odometry process 
and an independent process for odometric recalibration, which both in GPRSim and 
in GPRBS goes under the name Laser localization, since the behavior for odometric 
recalibration uses the readings of an LRF, together with a map, to infer its current 
location using scan matching, as described below. 

In fact, the problem of localization can be approached in many different ways. For 
outdoor applications, a robot may be equipped with GPS, which  in many cases will 
give sufficiently accurate position estimates. However, in indoor applications 
(standard) GPS cannot be used, since the signal is too weak to penetrate the walls of 
a building. Of course, it is possible to set up a local GPS system, for example by 
projecting IR beacons on the ceiling, using which 



CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 140
 

140  

 
 

  

Figure 6.14: An illustration of the need for localization in mobile robot navigation. In the left 

panel, the robot navigates using odometry only. As a result, the odometric trajectory (red) 

deviates quite significantly from the actual (green) trajectory. In the right panel, Laser 

localization was activated periodically, leading to much improved odometric estimates. 

 
the robot can deduce its position by means of triangulation9. However, such a system 
requires that the arena should be adapted to the robot, something that might not 
always be desirable or even possible. 

The localization method (combining odometry and laser scan matching) that will 
be described here is normally used together with some navigation behavior. Thus, the 
robotic brain will consist of at least two motor behav- iors, in which case decision-
making also becomes important. This topic will be studied in a later chapter: For now, 
the Laser localization behavior will be considered separately. 

 
6.3.1 Laser localization 

The behavior is intended for localization in arenas for which a map has been provided 
to the robot (in the form of a sequence of lines). The map can ei- ther be obtained 
using a robot (executing a Mapping behavior) or, for example, from the floor plan of a 
building. The behavior relies on scans of the arena using a two-dimensional LRF and, 
like many methods for localization in auto- nomous robots, it assumes that all scans 
are carried out in a horizontal plane, thus limiting the behavior to planar (i.e. mostly 
indoor) environments. In fact, the name Laser localization is something of a misnomer: 
The behavior does not actually carry out (continuous) localization. Instead, when 
activated, the behavior takes as input the current pose estimate and tries to improve 
it.  If 

9This is the method used in the Northstar® system, developed by Evolution Robotics, inc. 
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Figure 6.15: An enlargement of the most significant correction in odometric readings (in the 

right panel of Fig. 6.14) resulting from the Laser localization behavior. 

 
successful, the odometric pose is reset to the position suggested by the Laser 
localization behavior. 

The left panel of Fig. 6.14 illustrates the need for localization: The nav- igation 
task shown in Fig. 6.12 was considered again (with the same start-  ing point, but a 
different initial direction of motion), this time with realistic (i.e. non-zero) levels of noise 
in the wheel encoders and, therefore, also in the odometry. As can be seen in the 
figure, the odometric drift causes a rather large discrepancy between the actual 
trajectory (green) and the odometric es- timate (red). In the right panel, the robotic 
brain contained two behaviors (in addition to the cognitive Odometry process), namely 
Potential field navigation and Laser localization. The Laser localization behavior was 
activated periodically (thus deactivating the Potential field navigation behavior), each 
time recalibrat- ing (if necessary) the odometric readings.  As can be seen in the right 
panel  of Fig. 6.14, with laser localization in place, the discrepancy between the odo- 
metric and actual trajectories is reduced significantly. At one point, the Laser 
localization behavior was required to make a rather large correction of the odo- metric 
readings. That particular event is shown enlarged in Fig. 6.15. As can be seen, the 
odometric readings undergo a discrete step at the moment of lo- calization. 

When activated, the localization behavior10  considered here first stops the 
 

10See Sandberg,  D.,  Wolff,  K.,  and Wahde, M. A robot localization method based on laser scan 



CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 142
 

142  

 

 
 
 
 
 
 
 
 
 
 

 

Figure 6.16: Two examples of scan matching. The leftmost panel in each row shows a few 

rays (solid lines) from an actual LRF reading (plotted in the map used by the virtual LRF), and 

the middle panels show the virtual LRF readings (dotted lines) in a case in which the estimated 

pose differs quite strongly from the correct one (upper row), and one in which the difference 

is small (bottom row). The direction of heading is illustrated with arrows. The right panel in 

each row shows both the actual LRF rays and the virtual ones. The figure also illustrates the 

map, which consists of a sequence of lines. 

 
robot, and then takes a reading of the LRF. Next, it tries to match this reading to a 
virtual reading taken by placing a virtual LRF (hereafter: vLRF) at various positions in 
the map. Two examples of scan matching are shown in Fig. 6.16. The three panels in 
the upper row show a situation in which the odometry has drifted significantly. The 
upper left panel shows the readings (i.e. laser ray distances) from an actual LRF 
mounted on top of the robot (not shown). Note that, for clarity, the figure only shows 
a few of the many (typically hundreds) laser ray directions. The upper middle panel 
shows the readings of the vLRF, placed at the initial position and heading obtained 
from odometry. As can be seen in the upper right panel, the two scans match rather 
badly. By contrast, the three panels of the bottom row show a situation in which the 
pose error is small. The purpose of the search algorithm described below is to be able 
to correct the odometry, i.e. to reach a situation similar to the one shown in the bottom 
row of Fig. 6.16. Fig. 6.17 shows another example of a good (left panel) and a bad 
(right panel) scan match. In the case shown in the left panel, the 

matching, Proc. of AMiRE 2009, pp. 171-178, 2009. 
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Figure 6.17: Matching of LRF rays (in a different arena than the one used in the examples 

above). The readings of the actual LRF are shown in green, and those of the virtual LRF are 

shown in red. Left panel: An almost exact match. Right panel: In this case, the odometry has 

drifted enough to cause a large discrepancy between the actual and virtual LRF rays. 

 
odometric pose estimate is quite good, so that the rays from the actual LRF (green) 
match those of the vLRF quite well, at the current pose estimate. By constrast, in the 
situation shown in the right panel, the odometry has drifted significantly. 

 
Scan matching algorithm 

Let p = (x, y, ϕ) denote a pose (in the map) of the vLRF. The distances between the 

vLRF and an obstacle, along ray i, are obtained using the map11 and are de- noted δi. 
Similarly, the distances obtained for the real LRF (at its current pose, which normally 
differs from p when the localization behavior is activated) are denoted di. 

The matching error s between two scans can be defined in various ways. For rays 
that do not intersect an obstacle, the corresponding reading (di or δi) is (arbitrarily) set 
to -1. Such rays should be excluded when computing the error. Thus, the matching 
error is taken as ‚

. 1 Σn 
.

 δ 
Σ2 

 
 

s = , ν χi 
i=1 1 − 

d
 

, (6.8) 

where n is the number of LRF rays used12. The parameter χi is equal to one 
 

11In practice, the ray reading δi of the vLRF is obtained by checking for intersection between the lines 

in the map and a line of length R (the range of the LRF) pointing in the direction of the ray, and then 

choosing the shortest distance thus obtained (corresponding to the nearest obstacle along the ray). If 

no intersection is found, the corresponding reading is set to -1. 

12For example, in the case of a Hokuyo URG-04LX LRF, a maximum of 682 rays are available. 

i 

i 
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for those indices i for which both the real LRF and the vLRF detect an obstacle (i.e. 
obtain a reading different from -1) whereas χi is equal to zero for indices i such that 
either the real LRF or the vLRF (or both) do not detect any obstacle (out to the range 
R of the LRF). ν denotes the number of rays actually used in forming the error 
measure, i.e. the number of rays for which χi is equal to one. As can be seen, s is a 
measure of the (normalized) average relative deviation in detected distances 
between the real LRF and the vLRF. 

Since di are given and δi  depend on the pose of the vLRF,  one may write  s = s(p). 
Now, if the odometric pose estimate happens to be exact, the virtual and actual LRF 
scans will be (almost) identical (depending on the accuracy of the map and the noise 
level in the real LRF), resulting in a very small matching error, in which case the 
localization behavior can be deactivated and the robot may continue its navigation. 
However, if the error exceeds a user-defined threshold T , the robot can conclude that 
its odometric estimates are not suf- ficiently accurate, and it must therefore try to 
minimize the matching error by trying various poses in the map, i.e. by carrying out a 
number of virtual scans, in order to determine the actual pose of the robot. The scan 
matching problem can thus be formulated as the optimization problem of finding the 
pose p = pv that minimizes s = s(p). Once this pose has been found, the new 
odometric pose p

new
 is set equal to pv. 

Note that it is assumed that the robot is standing still during localization. 
This restriction (which, in principle, can be removed) is introduced in order to (i) avoid 
having to correct for the motion occuring during the laser sweep, which typically lasts 
between 0.01 and 0.1 s and (ii) avoid having to correct for the motion that would 
otherwise take place during scan matching procedure, which normally takes a (non-
negligible) fraction of a second. Thus, only one scan needs to be carried out using the 
real LRF mounted on the robot. The re- maining work consists of generating virtual 
scans in the map, at a sequence of poses, and to match these to the actual LRF 
readings. Unlike some other scan matching methods, the method used here does not 
attempt to fit lines to the LRF readings. Instead, the LRF rays (actual and virtual, as 
described above) are used directly during scan matching. The sequence of poses for 
the vLRF is generated as follows: First the actual LRF scan is carried out, generating 
the distances di. Next, a virtual scan is carried out (in the map) at the current estimated 
position p0. If the error s0 = s(p0) is below the threshold T , local- ization is complete. If 
not, the algorithm picks a random pose pj (where j = 1 in the first iteration) in a 
rectangular box of size Lx    Ly     Lϕ, centered on p0  in pose space, and computes the 
matching error sj = s(pj). The constants Lx and Ly are typically set to around 0.1 m 
and the constant Lϕ is set to around 

0.1 radians. 
The process is repeated until, for some j = j1, an error sj1 

< s0 is found. At this point, 
the rectangular box is re-centered to pj1 

, and the search continues, now picking a 
random pose in the rectangular box centered on pj1 

. Once a po- 
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Figure 6.18: An illustration of the sequence of poses generated during two executions of the 

search algorithm (with arrows indicating the direction of heading). In each panel, the actual 

position (measured in meters) of the robot is indicated with a filled square. The initial estimated 

position (i.e. from odometry, before correction) is shown as a filled disc, and the final estimated 

position is visualized as an open square. The intermediate points generated during the search 

are represented as open discs and are shown together with the corresponding iteration 

number. Note that, for clarity, only some of the intermediate points are shown. 

 
sition pj2 

is found for which sj2 
< sj1 

, the rectangular box is again re-centered etc. The 

procedure is repeated for a given number (N ) of iterations13. 
Even though the algorithm is designed to improve both the position and the 

heading simultaneously, in practice, the result of running the algorithm is usually to 
correct the heading first (which is easiest, since an error in heading typically has a 
larger effect on the scan match than a position error), as can be seen clearly in the 
right panel of Fig. 6.18. At this stage, the estimated pose can make a rather large 
excursion in position space. However, once a fairly correct heading has been found, 
the estimated position normally converges quite rapidly to the correct position. 

 

5. Related Work 

 
1 

Autonomous robots 

 
Both animals and robots manipulate objects in their environment in order to achieve 
certain goals. Animals use their senses (e.g. vision, touch, smell) to probe the 
environment. The resulting information, in many cases also en- hanced by the 
information available from internal states (based on short-term or long-term memory), 
is processed in the brain, often resulting in an action carried out by the animal, with 
the use of its limbs. 

Similary, robots gain information of the surroundings, using their sensors. The 

information is processed in the robot’s brain1, consisting of one or several processors, 
resulting in motor signals that are sent to the actuators (e.g. motors) of the robot. 

In this course, the problem of providing robots with the ability of making rational, 

 

Chapter 
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intelligent decisions will be central. Thus, the development of robotic brains is the main 
theme of the course. However, a robotic brain cannot op- erate in isolation: It needs 
sensory inputs, and it must produce motor output in order to influence objects in the 
environment. Thus, while it is the author’s view that the main challenge in 
contemporary robotics lies with the devel- opment of robotic brains, consideration of 
the actual hardware, i.e. sensors, processors, motors etc., is certainly very important 
as well. 

This chapter gives a brief overview of robotic hardware, i.e. the actual frame 
(body) of a robot, as well as its sensors, actuators, processors etc. The 

 

1The term control system is commonly used (instead of the term robotic brain). However, this term 

is misleading, as it leads the reader to think of classical control theory. Concepts from classical control 

theory are relevant in robots; For example, the low-level control of the motors of robots is often taken 

care of by PI- or PID-regulators. However, autonomous robots, i.e. freely moving robots that operate 

without direct human supervision, are expected to function in complex, unstructured environments, 

and to make their own decisions concerning which action to take in any given situation. In such cases, 

systems based only on classical control theory are simply insufficient. Thus, hereafter, the term robotic 

brain (or, simply, brain) will be used when referring to the system that provides an autonomous robot, 

however simple, with the ability to process information and decide upon which actions to take. 

 
1 
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Figure 1.1: Left panel: A Boe-bot. Right panel: A wheeled robot currently under construction in 

the Adaptive systems research group at Chalmers. 

 
various hardware-related issues will be studied in greater detail in the second half of 
the course, which will involve the construction of an actual robot of the kind shown in 
the left panel of Fig. 1.1. 

 

1.3 Robot types 

The are many different types of robots, and the taxonomy of such machines can be 
constructed in various ways. For example, one may classify different kinds of robots 
based on their complexity, their likeness to humans (or animals), their way of moving 
etc. In this course we shall limit ourselves to mobile robots, that is, robots that are 
able to move freely using, for example, wheels. The other main category of robots are 
stationary robotic arms, also referred to as robotic manipulators. Of course, as with 
any taxonomy, there are always ex- amples that do not fit neatly into any of the 
available categories. For example, a smart home equipped with a central computer 
and, perhaps, some form of manipulation capabilities, can also be considered a robot, 
albeit of a different kind. 

Robotic manipulators constitute a very important class of robots and they are used 
extensively in many industries, for example in assembly lines in the vehicle industry. 
However, such robots normally follow a predefined move- ment sequence and are not 
equipped with behaviors (such as collision avoid- ance) designed to avoid harming 
people. While there is nothing preventing the use of, for instance, sonar proximity 
sensors on a robotic manipulator, such op- tions are rarely used. Instead, manipulators 
are confined to robotic work cells, 
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Figure 1.2: A Kondo humanoid robot. Left panel: Front view. Right panel: Rear view. 

 
in which people are forbidden to enter while the manipulator is active. 

By contrast, in this course, we shall consider autonomous robots, i.e. robots that 
are capable of making their own decisions (depending on the situation at hand) rather 
than merely executing a pre-defined sequence of motions. In fact, since most robots 
equipped with such decision-making capabilities are mo- bile, one may define an 
autonomous robot as a mobile robot with the ability to make decisions. Two examples 
of mobile robots can be seen in Fig. 1.1. The left panel shows a Boe-bot, which will 
be assembled and used in the second half of the course.  Some of its main 
advantages are its small size (its length  is around 0.14 m and its width 0.11 m) and 
its simplicity. Needless to say, the robot also has several limitations; for example, its 
onboard processor (micro- controller) is quite slow. However, on balance, the Boe-bot 
provides a good introduction to the field of mobile robots. The right panel of Fig. 1.1 
shows a two-wheeled differentially steered robot which, although still under construc- 
tion at the Adaptive systems research group at Chalmers, is already being used in 
several research projects. This robot has a diameter of 0.40 m and a height of around 
1.00 m. 

Robotic manipulators have long dominated the market for robots, but with the 
advent of low-cost mobile robots the situation is changing: In 2007, the number of 
mobile robots surpassed the number of manipulators for the first time, and the gap is 
expected to widen over the next decades. 

The class of mobile robots can be further divided into subclasses, the most 
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Figure 1.3: The aluminium frame of a Boe-bot. 

 
 
 

important being legged robots and wheeled robots. Other kinds, such as fly- ing 
robots, exist as well, but will not be considered in this course. The class  of legged 
robots can be subdivided based on the number of legs, the most common types being 
bipedal robots (with two legs) and quadrupedal robots (with four legs). Most bipedal 
robots resemble humans, at least to some extent; such robots are referred to as 
humanoid robots. An example of a humanoid robot is shown in Fig. 1.2. Humanoid 
robots that (unlike the robot shown in Fig. 1.2) not only have the approximate shape 
of a human, but have also been equipped with more detailed human-like features, 
e.g. artificial skin, artificial hair etc., are called androids. It should be noted that the 
term humanoid refers to the shape of the robot, not its size; in fact, many humanoid 
robots are quite small. For example, the Kondo robot shown in Fig. 1.2 is 
approximately 0.35 m tall. 

 
Some robots are partly humanoid. For example, the wheeled robot shown in the 

right panel of Fig. 1.1 is currently being equipped with a humanoid up- per body. Unlike 
a fully humanoid robot, this robot need not be actively bal- anced, but will still exhibit 
many desirable features of humanoid robots, such as two arms for grasping and lifting 
objects, gesturing etc., as well as a head that will be equipped with two cameras for 
stereo vision and microphones providing capabilities for listening and speaking. 
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Figure 1.4: Left panel: Aluminium parts used in the construction of a rotating base for a 

humanoid upper body. The servo motor used for rotating the base is also shown, as well as 

the screws, washers and nuts. Right panel: The assembled base. 

 

1.4 Robotic hardware 

1.4.1 Construction material 

Regarding the material used in the actual frame of the robot, several options are 
available, such as e.g. aluminium, steel, various forms of plastic etc. The frame of a 
robot should, of course, preferably be constructed using a material that is both sturdy 
and light and, for that reason, aluminium is often chosen. Albeit somewhat expensive, 
aluminium combines toughness with low weight in a near-optimal way, at least for 
small mobile robots. Steel is typically too heavy to be practical in a small robot,  
whereas many forms of plastic eas-  ily break.  The frame of the robot used in this 
course (the Boe-bot) is made   in aluminium, and is shown in Fig. 1.3. The left panel 
of Fig 1.4 shows the aluminium parts used in a rotating base for a humanoid upper 
body. The as- sembled base, which can rotate around the vertical axis, is shown in 
the right panel. 

 
1.4.2 Sensors 

The purpose of robotic sensors is to measure either some physical characteris- tic of 
the robot (for example, its acceleration) or some aspect of its environment (for example, 
the detected intensity of a light source). The raw data thus ob- tained must then, in 
most cases, be processed further before being used in the brain of the robot. For 
example, an infrared (IR) proximity sensor may pro- vide a voltage (depending on the 
distance to the detected object) as its read- ing, which can then be converted to a 
distance, using the characteristics of the sensor available from its data sheet. 
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Figure 1.5: Left panel: A Khepera II robot. Note the IR proximity sensors (small black 

rectangles around the periphery of the robot), consisting of an emitter and a detector. Right 

panel: A Sharp GP2D12 infrared sensor. 

 
Needless to say, there exists a great variety of sensors for mobile robots. Here, 

only a brief introduction will be given, focusing on a few fundamental sensor types. 

 
Infrared proximity sensors 

An infrared proximity sensor (or IR sensor, for short), consists of an emitter and a 
detector. The emitter, a light-emitting diode (LED), sends out infrared light, which 
bounces off nearby objects, and the reflected light is then mea- sured by the detector 
(e.g. a phototransistor). Some IR sensors can also be used for measuring the ambient 
light level, i.e. the light observed by the detector when the emitter is switched off. As 
an example, consider the Khepera robot (manufactured by K-Team, www.k-
team.com), shown in the left panel Fig. 1.5. This robot is equipped with eight IR 
sensors, capable of measuring both am- bient and reflected light. The range of IR 
sensors is quite short, though. In  the Khepera robot, reflected light measurements 
are only useful to a distance of around 0.050 m from the robot, i.e. approximately one 
robot diameter, even though other IR sensors have longer range. Another example is 
the Sharp GP2D12 IR sensor, shown in the right panel of Fig. 1.5. This sensor detects 
ob- jects in the range [0.10, 0.80] m. It operates using a form of triangulation: Light is 
emitted from the sensor and, if an object is detected, the reflected light is re- ceived at 
an angle that depends on the distance to the detected object. The raw signal from the 
sensor consists of a voltage that can be mapped to a distance. The mapping is non-
linear, and for very short distances, the sensor cannot give 
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Figure 1.6: The left panel shows a simple encoder, with a single detector (A), that measures 

the interruptions of a light beam, producing the curve shown below the encoder. In the right 

panel, two detectors are used, making it possible to determine also the direction of rotation. 

 
reliable readings (hence the lower limit of 0.10 m). 

 
Digital optical encoders 

In many applications, accurate position information is essential for a robot, and there 
are many different methods for positioning, e.g. inertial navigation, GPS navigation, 
landmark detection etc., some of which will be considered in a later chapter. One of the 
simplest forms of positioning, however, is dead reck- oning, in which the position of 
a robot is determined based on measurements of the distance travelled by each wheel 
of the robot. This information, when combined with knowledge of the robot’s physical 
properties (i.e. its kinemat- ics, see Chapter 2) allows one to deduce the current 
position and heading. The process of measuring the rotation of the wheel of a robot 
is an example of odometry, and a sensor capable of such measurements is the 
digital optical encoder or, simply, encoder. Essentially, an encoder is a disc made 
of glass or plastic, with shaded regions that regularly interrupt a light beam. By count- 
ing the number of interruptions, the rotation of the wheel can be deduced, as shown 
in the left panel of Fig. 1.6. However, in order to determine also the di- rection of 
rotation, a second detector, placed at a quarter of a cycle out of phase 
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Figure 1.7: A Ping ultrasonic distance sensor. 

 
with the first detector, is needed (such an arrangement is called quadrature 
encoding, and is shown in the right panel of Fig. 1.6). 

 
Ultrasound (sonar) sensors 

Ultrasound sensors, also known as sonar sensors or simply sonars, are based on 
time-of-flight measurement. Thus, in order to detect the distance to an ob- ject, a sonar 

emits a brief pulse of ultrasonic sound, typically in the frequency range 40-50 kHz2. 
The sensor then awaits the echo. Once the echo has been detected, the distance to 
the object can be obtained using the fact that sound travels at a speed of around 340 
m/s. As in the case of IR sensors, there is both a lower and an upper limit for the 
detection range of a sonar sensor. If the distance to an object is too small, the sensor 
simply does not have enough time to switch from emission to listening, and the signal 
is lost. Similarly, if the distance is too large, the echo may be too weak to be detected. 

Fig. 1.7 shows a Ping ultrasonic distance sensor, which is commonly used in 
connection with the Boe-bot. This sensor can detect distances to objects in the range 
[0.02, 3.00] m. 

 
Laser range finders 

Laser range finders (LRFs) commonly rely, like sonar sensors, on time-of-flight 
measurements, but involve the speed of light rather than the speed of sound. Thus, a 
laser range finder emits pulses of laser light (in the form of thin beams), 

 

2For comparison, a human ear can detect sounds in the range 20 hz to 20 kHz. Thus, the sound 

pulse emitted by a sonar sensor is not audible. 
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Figure 1.8: Left panel: A Hokuyo URL-04LX laser range finder. Right panel: A typical reading, 

showing the distance to the nearest object in various directions. The pink rays indicate 

directions in which no detection is made. The maximum range of the sensor is 4 m. 

 
and measures the time it takes for the pulse to bounce off a target and return to the 

range finder. An LRF carries out a sweep over many directions3 resulting in an 
accurate local map of distances to objects along the line-of-sight of each ray. LRFs 
are generally very accurate sensors, but they are also much more expensive than 
sonars sensors and IR sensors. 

A Hokuyo URG-04LX LRF is shown in the left panel of Fig. 1.8. This sensor has a 
range of around four meters, with an accuracy of around 1 mm. It can generate 
readings in 683 different directions, with a frequency of around 10 Hz. As of the time 
of writing (Jan. 2010), a Hokuyo URG-04LX costs around 2,000 USD. The right panel 
of Fig. 1.8 shows a typical reading, obtained from the software delivered with the LRF. 

 
Cameras 

Cameras are used as the eyes of a robot. In many cases, two cameras are used, in 
order to provide the robot with binocular vision, allowing it to estimate the range to 
detected objects. There are many cameras available for robots, for example the 
CMUCam series which has been developed especially for use in mobile robots; The 
processor connected to the CMUCam is capable of basic image processing. At the 
time of writing (Jan. 2010), a CMUCam costs on the order of 150 USD. A low-cost 
alternative is to use ordinary webcams, for which prices start around 15 USD. Fig. 1.9 
shows a simple robotic head consisting of two servo motors (see below) and a single 
webcam. 

However, while the actual cameras may not be very costly, the use of cam- eras 
is computationally a very expensive procedure. Even at a low resolution, 

 

3A typical angular interval for an LRF is around 180-240 degrees. 
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Figure 1.9: A simple robotic head, consisting of two servo motors and a webcam. 

 
say 320 240 pixels, a webcam will deliver a flow of around 1.5 Mb/s, assum- ing a 
frame rate of 20 Hz and a single byte of data per pixel. The actual data transfer is 
easily handled by a Universal serial bus (USB), but the data must not only be 
transferred but also analyzed, something which is far from trivial. An introduction to 
image processing for robots will be given in a later chapter. 

 
Other sensors 

In addition to odometry based on digital optical encoders, robot positioning can be 
based on inertial sensors, i.e. sensors that measure the time derivatives of the 
position or heading angle of the robot. Examples of inertial sensors are 
accelerometers, measuring linear acceleration, and gyroscopes, measuring an- 
gular acceleration. Essentially, an accelerometer consists of a small object, with mass 
m, attached to a spring and damper, as shown in Fig. 1.10. As the system accelerates, 
the displacement z of the small object can be used to deduce the acceleration ẍ of the 
robot.  Given continuous measurements of the accelera- tion, as a function of time, 
the position (relative to the starting position) can be 
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Figure 1.10: An accelerometer. The motion of the small object (mass m) resulting from the 

acceleration of the larger object to which the accelerometer is attached can be used for 

deducing the acceleration. 

 

deduced. For robots operating in outdoor environments, positioning based on the 
global positioning system (GPS) is often a good alternative. The GPS re- lies on 
24 satellites that transmit radio frequency signals which can be picked up by objects 
on Earth. Given the exact position of (at least) three satellites, rel- ative to the position 
of e.g. a robot, the absolute position (latitude, longitude, and altitude) of the robot can 
be deduced. 

Other sensors include strain gauge sensors (measuring deformation), tac- tile 

(touch) sensors measuring physical contact between a robot and objects in its 

environment, and compasses, measuring the direction of movement. 

 
 

1.4.3 Actuators 

An actuator is a device that allows a robot to take action, i.e. to move or manip- ulate 
the surroundings in some other way. Motors, of course, are very common types of 
actuators. Other kinds of actuation include, for example, the use of microphones (for 
human-robot interaction). 

Movements can be generated in various ways, using e.g. electrical motors, 
pneumatic or hydraulic systems etc. In this course, we shall only consider electrical, 
direct-current (DC) motors and, in particular, servo motors. Thus, when referring to 
actuation in this course, the use of such motors is implied. 

Note that actuation normally requires the use of a motor controller in con- nection 
with the actual motor. This is so, since the microcontroller (see below) responsible for 
sending commands to the motor cannot, in general, provide sufficient current to drive 
the motor. The issue of motor control will be consid- ered briefly in connection with the 
discussion of servo motors below. 

z m 
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Figure 1.11: A conducting wire in a magnetic field. B denotes the magnetic field strength 

and I the current through the wire.  The Lorentz force F acting on the wire is given by F  = I 

× B. 

 
 
 
 
 
 
 
 
 
 
 
 

 

I 

Figure 1.12: A conducting loop of wire placed in a magnetic field. Due to the forces acting 

on the loop, it will begin to turn. The loop is shown from above in the right panel, and from 

the side in the left panel. 

 

DC motors 

Electrical direct current (DC) motors are based on the principle that a force acts on a 
wire in a magnetic field if a current is passed through the wire, as illustrated in Fig. 
1.11. If instead a current is passed through a closed loop of wire, as illustrated in Fig. 
1.12, the forces acting on the two sides of the loop will point in opposite directions, 
making the loop turn. A standard DC motor consists of an outer stationary cylinder 
(the stator), providing the magnetic field, and an inner, rotating part (the rotor). From 
Fig. 1.12 it is clear that the loop will reverse its direction of rotation after a half-turn, 
unless the direction of the current is reversed. The role of the commutator, connected 
to the rotor of a DC motor, is to reverse the current through the motor every half-turn, 
thus allowing continuous rotation. Finally, carbon brushes, attached to the stator, 
complete the electric circuit of the DC motor. There are types of DC motors 
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Figure 1.13: The equivalent electrical circuit for a DC motor. 

 
that use electromagnets rather than a permanent magnet, and also types that are 
brushless. However, a detailed description of such motors are beyond the scope of 
this text. 

DC motors are controlled by varying the applied voltage. The equations for DC 
motors can be divided into an electrical and a mechanical part. The motor can be 
modelled electrically by the equivalent circuit shown in Fig. 1.13. Letting V denote the 
applied voltage, and ω the angular speed of the motor shaft, the electrical equation 
takes the form 

 

di 

V = L 

dt 

+ Ri + VEMF, (1.1) 

where i is the current flowing through the circuit, L is the inductance of the motor, R 
its resistance, and VEMF the voltage (the back EMF) counteracting V . The back EMF 
depends on the angular velocity, and can be written as 

VEMF = ceω, (1.2) 

where ce is the electrical constant of the motor. For a DC motor, the generated torque 
τg is directly proportional to the current, i.e. 

τg = cti, (1.3) 

where ct is the torque constant of the motor. Turning now to the mechanical equation, 
Newton’s second law gives 

I 
dω 

= τ, (1.4) 

dt 

where I  is the combined moment of inertia of the motor and its load, and   τ is the 
total torque acting on the motor. For the DC motor, the equation takes the form 

 

 
 

EMF 
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I 
dt  

= τg − τf − τ, (1.5) 
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Figure 1.14:  Left panel:  A HiTec  645MG servo.  The suffix MG indicates that the servo  is 

equipped with a metal gear train. Right panel: A Parallax servo, which has been modified for 

continuous rotation. Servos of this kind are used on the Boe-bot. The circular (left) and star-

shaped (right) white plastic objects are the servo horns. 

 
where τf is the frictional torque opposing the motion and τ is the (output) torque acting 
on the load. The frictional torque can be divided into two parts, the Coulomb friction 
(cCsgn(ω)) and the viscous friction (cvω). Thus, the equations for the DC motor can 
now be summarized as 

τ = 
ct 

V  − 
ctL di − 

cect ω, (1.6) 

g 
R R dt R 

dω 

I 
dt 

=  τg − cCsgn(ω) − cvω − τ, (1.7) 

In many cases, the time constant of the electrical circuit is much shorter than that of 
the physical motion, so the inductance term can be neglected. Further- more, for 
simplicity, the dynamics of the mechanical part can also be neglected under certain 
circumstances (e.g. if the moment of inertia of the motor and load is small).  Thus, 
setting di/dt and dω/dt to zero, the steady-state DC mo- tor equations, determining 
the torque τ on the load for a given applied voltage V and a given angular velocity ω 

τ = 
ct 

V  − 
cect ω, (1.8) 

τ =  τg − cCsgn(ω) − cvω, (1.9) 

are obtained. In many cases, the axis of a DC motor rotates too fast and gener- ates 
a torque that is too weak for driving a robot. Thus, a gear box is commonly used, which 
reduces the rotation speed taken out from the motor (on the sec- ondary drive shaft) 
while, at the same time, increasing the torque. For an ideal (loss-free) gear box, the 
output torque and rotation speed are given by 

τout = Gτ, 
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Figure 1.15: Pulse width modulation control of a servo motor. The lengths of the pulses 

determine the requested position angle of the motor output shaft. The interval betwwn pulses 

(typically around 20 ms) is denoted T . 

 

 

 
where G is the gear ratio. 

ωout = 
1 

ω, (1.10) 

G 

 

Servo motors 

A servo motor is essentially a DC motor equipped with control electronics and a gear 
train (whose purpose is to increase the torque to the required level for moving the 
robot, as described above). The actual motor, the gear train, and the control 
electronics, are housed in a plastic container. A servo horn (either plastic or metal) 
makes it possible to connect the servo motor to a wheel or some other structure. Fig. 
1.14 shows two examples of servo motors. 

The angular position of a servo motor’s output shaft is determined using a 
potentiometer. In a standard servo, the angle is constrained to a given range [ αmax, 

αmax], and the role of the control electronics is to make sure that the servo rotates to a 
set position α (given by the user). A servo is fitted with a three-wire cable. One wire 
connects the servo to a power source (for exam- ple, a motor controller or, in some 
cases, a microcontroller board) and another wire connects it to ground. The third wire 
is responsible for sending signals to the servo motor. In servo motors, a technique 
called pulse width modulation 
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Figure 1.16: An arm of a humanoid robot. The allowed rotation range of the elbow is around 

100 degrees. 

 
(PWM) is used: Signals in the form of pulses are sent (e.g. from a microcon- troller) 
to the control electronics of the servo motor. The duration of the pulses determine the 
required position, to which the servo will (attempt to) rotate, as shown in Fig. 1.15. For 
a walking robot (or for a humanoid upper body), the limitation to a given angular range 
poses no problem: The allowed rotation range of a servo is normally sufficient for, say, 
an elbow or a shoulder joint. As an example, an arm of a humanoid robot is shown in 
Fig. 1.16. For this particu- lar robot, the rotation range for the elbow joint is around 100 
degrees, i.e. easily within the range of a standard servo (around 180 degrees). The 
limitation is, of course, not very suitable for motors driving the wheels of a robot. 
Fortunately, servo motors can be modified to allow continuous rotation. The Boe-bot 
that will be built in the second half of the course uses Parallax continuous rotation 
servos (see the right panel of Fig. 1.14), rather than standard servos. 

 
Other motors 

There are many different types of motors, in addition to standard DC motors and servo 
motors. An example is the stepper motor, which is also a version of the DC motor, 
namely one that moves in fixed angular increments, as the name implies. However, in 
this course, only standard DC motors and servo motors will be considered. 

 
1.4.4 Processors 

Sensors and actuators are necessary for a robot to be able to perceive its envi- 
ronment and to move or manipulate the environment in various ways. How- 
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Figure 1.17: A Board of Education (BOE) microcontroller board, with a Basic Stamp II (BS2) 

microcontroller attached. In addition to the microcontroller, the BOE has a serial port for 

communication with a PC (used, for example, when uploading a program onto the BS2), as 

well as sockets for attaching sensors and electronic circuits. In this case, a simple circuit 

involving a single LED, has been built on the BOE. The two black sockets in the upper right 

corner are used for connecting up to four servo motors. 

 
ever, in addition to sensors and actuators, there must also be a system for an- alyzing 
the sensory information, making decisions concerning what actions to take, and 
sending the necessary signals to the actuators. 

In autonomous robots, it is common to use several processors to represent the 
brain of the robot. Typically, high-level tasks, such as decision-making, are carried out 
on a standard PC, for example a laptop computer mounted on the robot, whereas 
low-level tasks are carried out by microcontrollers, which will now be introduced briefly. 

 
Microcontrollers 

Essentially, a microcontroller is a single-chip computer, containing a central 
processing unit (CPU), read-only memory (ROM, for storing programs), random- 
access memory (RAM, for temporary storage, such as program variables), and 
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several input-output (I/O) ports. There exist many different microcontrollers, with 
varying degrees of complexity, and different price levels, down to a few USD for the 

simplest ones. An example is the Basic Stamp II4 (BS2) microcon- troller, which costs 
around 50 USD. 

While the BS2 is sufficient for the experimental work carried out in this course (in 
the next quarter), its speed is only around 4,000 operations per sec- ond (op/s) and it 
has a RAM memory (for program variables) of only 32 bytes and a ROM (for program 
storage) of 2 kilobytes (Kb). 

However, many alternative microcontrollers are available for more advanced robots. 
Two examples, with roughly the same price as the BS2, are the BasicX and ZBasic 
microcontrollers, which are both compatible with the BOE micro- controller board used 
together with the BS2. The BasicX microcontroller has a RAM memory of 400 bytes 
and 32 Kb for program storage, whereas ZBasic has 4 Kb of RAM and 62 Kb for 
program storage. BasicX executes around 83,000 op/s, whereas (some versions of) 
ZBasic can reach up to 2.9 million op/s. 

In many cases, microcontrollers are sold together with microcontroller boards (or 

microcontroller modules), containing sockets for wires connecting the mi- 

crocontroller to sensors and actuators as well as control electronics, power sup- ply 

etc. An example is the Board of education (BOE) microcontroller board. 

The BOE, shown in Fig. 1.17, is equipped with a solderless breadboard, on which 
electronic circuits can be built without any soldering, which is very use- ful for 
prototyping. 

Since microcontrollers do not have human-friendly interfaces such as a keyboard 
and a screen, the normal operating procedure is to write and compile programs on an 
ordinary computer (using, of course, a compiler adapted for the microcontroller in 
question), and then upload the programs onto the mi- crocontroller. In the case of the 
BS2 microcontroller, the language is a version of Basic called PBasic. 

 
Robotic brain architectures 

An autonomous robot must be capable of both high-level and low-level pro- cessing. 
The low-level processing consists, for example, of sending signals to motor controllers 
(see below) which, in turn, send (for example) PWM pulses to servo motors. Another 
low-level task is to retrieve raw data (e.g. a voltage value from an IR proximity sensor). 
The distinction between low-level and high-level tasks is a bit fuzzy. For example, the 
voltage value from an IR sen- sor (e.g. the Sharp GP2D12 mentioned above) can be 
mapped to a distance value, which of course normally is more relevant for decision-
making than the raw voltage value. The actual conversion would normally be 
considered a low-level task but might as well also be carried out on the robot’s onboard 
PC. 

 

4Basic Stamp is a registered trademark of Parallax, inc., see www.parallax.com. 

http://www.parallax.com/
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Figure 1.18: An example of a typical robotic brain architecture, for a differentially steered 

two-wheeled robot equipped with wheel encoders, three sonar sensors, one LRF, and two web 

cameras. 

 

The hardware configuration providing a robot’s processing capability is re- ferred to 
as the robotic brain architecture. An example of a typical robotic brain architecture 
is shown in Fig. 1.18. The robotic brain shown in the figure would be used in 
connection with a two-wheeled differentially steered robot. As can be seen in the 
figure, the microcontroller would handle low-level pro- cessing, such as measuring 
the pulse counts of the wheel encoders, collecting readings from the three sonars, 

and sending motor signals (e.g. desired set speeds) to the motor controller5, which, 
in turn, would send signals to the motors. However, the LRF and the web cameras 
would be directly connected, via USB (or, possibly, serial) ports, to the main processor 
(on the laptop), since most microcontrollers would not be able to handle the massive 
data flow from such sensors. 

The main program (i.e. the robotic brain), running on the laptop, would process 
the data from the various sensors. For example, the pulse counts from 

 

5A separate motor controller (equipped with its own power source) is often used for robotics 

applications, since the power source for the microcontroller may not be able to de- liver sufficient 

current for driving the motors as well. 
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Figure 1.19: An example of a robotic brain architecture for a Boe-bot. 

 
the wheel encoders would be translated to an estimate of position and head- ing, as 
described in Chapter 2. Given the processed sensory data, as well as in- formation 
stored in the (long-term or short-term) memory of the robotic brain (for example, a 
map of the arena in which the robot operates), the main pro- gram would determine 
the next action to be carried out by the robot, compute the appropiate motor 
commands and send them to the microcontroller. 

Note that the figure only shows an example: Many other configurations could be 
used as well. For example, there are cameras developed specifically for robotics 
applications that, unlike standard web cameras, are able to carry out much of the 
relevant image processing (e.g. detecting and extracting faces), and then only sending 
that information (rather than the raw pixel values) to the laptop computer. 

The robotic brain architecture shown in Fig. 1.18 would be appropriate for a rather 
complex (and costly!) robot.  Such robots are beyond the scope of  the experimental 
work carried out in the second half of this course. The ex- perimental work, which will 
be carried out using a Boe-bot (see the left panel of Fig. 1.1), involves a much simpler 
robotic brain architecture, illustrated in Fig. 1.19. As can be seen, in this case, the 
robot has a single processor, namely the BS2 microcontroller, which thus is 
responsible both for the low-level (sig- nal) processing and the high-level decision-
making. 

The microcontroller sends signals to the two servo motors and receives in- put 
from the sensors attached to the robot, for example, two photo-resistors, a sonar 
sensor, and whiskers. The whiskers are simple touch sensors that give a reading of 
either 0 (if no object is touched) or 1 (if the whisker touches an object). Of course, 
other sensors (such as IR sensors or simple wheel encoders) can be added as well, 
but one should keep in mind that the processing capabil- ity of the BS2 is very limited. 
Note that no motor controller is used: The BOE is capable of generating sufficient 
current for up to four Parallax servo motors. 
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2 
Kinematics and dynamics 

 
2.1 Kinematics 

Kinematics is the process of determining the range of possible movements for a 
robot, without consideration of the forces acting on the robot, but tak- ing into account 
the various constraints on the motion. The kinematic equa- tions for a robot depend 
on the robot’s structure, i.e. the number of wheels, the type of wheels used etc. Here, 
only the case of differentially steered two- wheeled robots will be considered. For 
balance, a two-wheeled robot must also have one or several supporting wheels (or 
some other form of ground contact, such as a ball in a material with low friction). The 
influence of the supporting wheels on the kinematics and dynamics will not be 
considered. 

 
2.1.1 The differential drive 

A schematic view of a differentially steered robot is shown in Fig. 2.1. The Boe- bot 
that will be considered in the second half of the course (see the left panel 
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Figure 2.1: A schematic representation of a two-wheeled, differentially steered robot. 
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Figure 2.2: Left panel: Kinematical constraints force a differentially steered robot to move in 

a direction perpendicular to a line through the wheel axes. Right panel: For a wheel that rolls 

without slipping, the equation v = ωr holds. 

 
of Fig. 1.1) is an example of such a robot. 

A differentially steered robot is equipped with two independently steered wheels. 
The position of the robot is given by the two coordinates x and y, and its direction of 
motion is denoted ϕ. 

It will be assumed that the wheels are only capable of moving in the direc- tion 
perpendicular to the wheel axis (see the left panel of Fig. 2.2). Furthermore, it will be 
assumed that the wheels roll without slipping, as illustrated in the right panel of Fig. 
2.2. For such motion, the forward speed v of the wheel is related to the angular velocity 
ω through the equation 

v = ωr, (2.1) 

 

where r is the radius of the wheel. 
The forward kinematics of the robot, i.e. the variation of x, y and ϕ, given the 

speeds vL and vR of the left and right wheel, respectively, can be obtained by using the 
constraints on the motion imposed by the fact that the frame of the robot is a rigid 
body. For any values of the wheel speeds, the motion of the robot can be seen as a 
pure rotation, with angular velocity ω  =  ϕ̇  around the instantaneous center of 
rotation (ICR). Letting L denote the distance from the ICR to the center of the robot, 
the speeds of the left and right wheels can be written 

 
and 

vL = ω(L − R), (2.2) 

vR = ω(L + R), (2.3) 

where R is the radius of the robot’s body (which is assumed to be circular and with a 
circularly symmetric mass distribution). The speed V of the center-of- 
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mass of the robot is given by 

V = ωL. (2.4) 

Inserting Eq. (2.4) into Eqs. (2.2) and (2.3), L can be eliminated. V and ω can then 
be obtained in terms of vL and vR as 

V = 
vL  + vR 

, (2.5) 

2 

ω = 
vL  − vR 

. (2.6) 

2R 

Denoting the speed components of the robot Vx and Vy, and noting that Vx = 

V cos ϕ, Vy = V sin ϕ, the position of the robot at time t1 is given by 

X(t ) − 

X 
=  

∫ t1 

V (t)dt = 
∫ t1  vL(t) + vR(t) 

cos ϕ(t)dt, (2.7) 

  

Y (t ) − 

Y 
=   

∫ t1 

V  (t)dt = 
∫ t1  vL(t) + vR(t) 

sin ϕ(t)dt, (2.8) 

  

ϕ(t ) − 

ϕ 
=  

∫ t1 

ω(t)dt = − 
∫ t1 vL(t) − vR(t) 

dt, (2.9) 

  

where (X0, Y0) is the starting position of the robot (at time t = t0), and ϕ0 is its initial 
direction of motion. The position and heading together form the pose of the robot. 
Thus, if vL(t) and vR(t) are known, the position and orientation of the robot can be 
determined for any time t. Numerical integration is normally required, since the 
equations for X and Y can only be integrated analytically if ϕ has a rather simple 
form. Two special cases, for which the three equa- tions can all be integrated 
analytically, are (check!) (vL(t), vR(t)) = (v1, v2) and (vL(t), vR(t)) = (v0(t/t1), v0(t/t2)), 
where v1, v2, v0, t1 and t2 are constants. In these cases, one can first find ϕ(t) (for 
arbitrary t), and then obtain X(t) and Y (t). 

Of course, in a real robot, the wheel speeds can never be determined with perfect 
accuracy. Instead, the integration must be based on estimates v̂L(t) and v̂R(t),  which,  
in turn,  are computed based on the pulse counts of the wheel encoders. There are 
many factors limiting the accuracy of the speed estimates. One such limitation 
concerns the number of pulses per revolution: For exam- ple, the wheel encoders 
supplied by Parallax (for the Boe-bot) use the eight holes in the robot’s wheel for 
generating pulse counts, so that a complete revo- lution of a wheel corresponds to only 
eight pulses. Evidently, a speed estimate (which requires two different pulse readings, 
at different times, as well as an estimate of the time elapsed between the two readings) 
for such a robot would not be very accurate. By contrast, in more advanced robots, 
the encoders may be mounted before the gear box (in the case of a DC motor), and 
may also pro- vide much more than eight pulses per revolution (of the motor shaft), 
so that a rather accurate wheel speed estimate can be obtained. 

t 0 t 0 

t 0 t 0 

t 0 t 0 

0 

0 

0 
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However, even if the speed estimates are very accurate, there are other sources 
of error as well. For example, the robot’s wheels may slip occasionally. Furthermore, 
the kinematic model may not provide a completely accurate es- timate of the robot’s 
true kinematics (for example, no wheel is ever perfectly circular). 

Once wheel speed estimates are available, the pose can be estimated, us- ing a 
kinematic model as described above. The process of estimating a robot’s position and 
heading based on wheel encoder data is called odometry. Due to the limited 
accuracy of velocity estimates, the estimated pose of the robot will be subject to an 
error, which grows with time. Thus, in order to maintain a sufficiently accurate pose 
estimate for navigation over long distances, an in- dependent method of odometric 
recalibration must be used. This issue will be considered in a later chapter. 

Normally, the wheel speeds are not given a priori. Instead, the signals sent to the 
motors by the robotic brain (perhaps in response to external events, such as detection 
of obstacles) will determine the torques applied to the motor axes. In order to 
determine the motion of the robot one must then consider not only its kinematics but 
also its dynamcs. This will be the topic of the next section. 

 
2.2 Dynamics 

The kinematics considered in the previous section determines the range of pos- sible 
motions for a robot, given the constraints which, in the case of the two- wheeled 
differential robot, enforce motion in the direction perpendicular to the wheel axes. 
However, kinematics says nothing about the way in which a particular motion is 
achieved. Dynamics, by contrast, considers the motion of the robot in response to the 
forces (and torques) acting on it. In the case of the two-wheeled, differentially steered 
robot, the two motors generate torques (as described above) that propel the wheels 
forward, as shown in Fig. 2.3. The fric- tional force at the contact point with the ground 
will try to move the ground backwards. By Newton’s third law, a reaction force of the 
same magnitude will attempt to move the wheel forward. In addition to the torque τ 
from the motor (assumed to be known) and the reaction force F from the ground, a 
re- action force ρ from the main body of the robot will act on the wheel, mediated by 
the wheel axis (the length of which is neglected in this derivation). Using Newton’s 
second law, the equations of motion for the wheels take the form 

 

mv̇L = FL − ρL, (2.10) 

mv̇R = FR − ρR, (2.11) 

I wφ̈L  = τL − FLr, (2.12) 
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Figure 2.3: Left panel: Free-body diagram showing one of the two wheels of the robot. Right 

panel: Free-body diagram for the body of the robot and for the two wheels. Only the forces 

acting in the horizontal plane are shown. 

 
and 

Iwφ̈R  = τR − FRr, (2.13) 

 

where m is the mass of the wheel, Iw is its moment of inertia, and r its radius. 
It is assumed that the two wheels have identical properties. The right panel of Fig. 2.3 
shows free-body diagrams of the robot and the two wheels, seen from above. 
Newton’s equations for the main body of the robot (mass M ) take the form 

 
and 

M V̇ = ρL + ρR (2.14) 

Iϕ̈ = (−ρL + ρR) R, (2.15) 

 

where I is its moment of inertia. 
In the six equations above there are 10 unknown variables, namely vL, vR, FL, FR, 

ρL, ρR, φL, φR, V , and ϕ. Four additional equations can be obtained from kinematical 
considerations. As noted above, the requirement that the wheels should roll without 
slipping leads to the equations 

vL = rφ̇L (2.16) 

 

and 

vR = rφ̇R. (2.17) 

Furthermore, the two kinematic equations (see Sect. 2.1) 

V  = 
vL + vR 

, (2.18) 
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Mr2
 M 

 
and 

ϕ̇  = 
vL  − vR 

. (2.19) 

2R 

complete the set of equations for the dynamics of the differentially steered robot. 
Combining Eq. (2.10) with Eq. (2.12) and Eq. (2.11) with Eq. (2.13), the equations 

mv̇L 
=  

τL − Iwφ̈L ρ 

r 
L 

, (2.20) 

 
mv̇R 

=  
τR − Iwφ̈R ρ 

r 
R 

 
(2.21) 

are obtained. Inserting the kinematic conditions from Eqs. (2.16) and (2.17), ρL 

and ρR can be expressed as 

ρ = 
τL − 

. 
Iw 

+ m

Σ 

v̇  
 
, (2.22) 

L 
r r2 L 

and 
 

ρ = 
τR − 

. 
Iw 

+ m

Σ 

v̇ 

. (2.23) 

Inserting Eqs. (2.22) and (2.23) in Eq. (2.14), one obtains the acceleration of the 
center-of-mass of the robot body as 

M V˙ 
=   ρ + ρ = − 

. 

+ m

Σ 

(v̇  

(τL + τR) Iw 

  
  

 

+ v̇ 
 

) = (2.24) 

= 
(τL + τR) − 2 

. 
Iw 

+ m

Σ 

V̇  , 

 

where, in the last step, the derivative with respect to time of Eq. (2.18) has been used. 
Rearranging terms, one can write Eq. (2.24) as 

 

where 

M V̇    = A (τL + τR) , (2.25) 

 
1 

r 
.
1 + 2 

.
 Iw + m 

ΣΣ
 
. (2.26) 

L R 
r r2 

R 

L R 
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For the angular motion, using Eqs. (2.22) and (2.23), Eq. (2.15) can be expressed as 
Iϕ̈ = (−ρ   + ρ  ) R = (−τ   + τ  ) + R 

. 

+ m

Σ 

(v̇   − v̇   ) , (2.27) 

R Iw 

    
  

 
 

Differentiating Eq. (2.19) with respect to time, and inserting the resulting ex- pression 

for v̇R      v̇L  in Eq.   (2.27),  one obtains the equation for the angular motion as 

Iϕ̈ = (−τ   + τ  ) − 2R + m

Σ 

ϕ̈. (2.28) 

L R L R 
r r2 

L R 
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Rearranging terms, this equation can be expressed in the form 

Iϕ̈ = B (−τL + τR) , (2.29) 

 

where 
B =  

1
  

. (2.30) 

 r  + 2 
. 

IwR + mRr 
Σ

 

Due to the limited strength of the motors and to friction, as well as other losses (for 
instance in the transmission), there are of course limits on the speed and rotational 
velocity of the robot. Thus, the differential equations for V and ϕ should also include 
damping terms. In practice, for any given robot, the exact form of these terms must be 
determined through experiments (i.e. through sys- tem identification). A simple 
approximation is to use linear damping terms, so that the equations of motion for the 
robot become 

 

 
 

and 

M V̇ + αV  = A (τL + τR) , (2.31) 

Iϕ̈ + βϕ̇  = B (−τL + τR) , (2.32) 

where α and β are constants. Note that, if the mass m and moment of inertia Iw of 
the wheels are small compared to the mass M and moment of inertia I of the robot, 
respectively, the expression for A can be simplified to 

1 
A = . (2.33) 

r 

Similarly, the expression for B can be simplified to 
 

B = 
R

. (2.34) 

r 

Given the torques τL and τR generated by the two motors in response to the signals 
sent from the robotic brain, the motion of the robot can thus be obtained by integration 
of Eqs. (2.31) and (2.32). 
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3 
Simulation of autonomous robots 

 
Simulations play an important role in research on (and development of) auto- nomous 
robots, for several reasons. First of all, testing a robot in a simulated environment can 
make it possible to detect whether or not the robot is prone to catastrophic failure in 
certain situations, so that the behavior of the robot can be altered before it is 
unleashed in the real world. Second,  building a robot  is often costly (for example, 
most laser range finders cost several thousand USD). Thus, through simulations, it is 
possible to test several designs before constructing an actual robot. Furthermore, it is 
common to use stochastic opti- mization methods, such as evolutionary algorithms, in 
connection with the de- velopment of autonomous robots. Such methods require that 
many different robotic brains be evaluated, which is very time-consuming if the work 
must be carried out in an actual robot. Thus, in such cases, simulations are often 
used, even though the resulting robotic brains must, of course, be thoroughly tested 
in real robots, a procedure which often requires several iterations involving simulated 
and actual robots. In this chapter, an introduction to some of the general issues 
pertaining to robotic simulations will be given, along with a brief description of (some 
of) the features of two particular simulators for mo- bile robots, namely GPRSim and 
ARSim. GPRSim is an advanced 3D simulator for automomous robots, which is used 
in certain research projects within the Adaptive systems group. ARSim is a simplified 
(2D) Matlab simulator used in this course. 

 

3.3 Simulators 

Over the years, several different simulators for mobile robots have appeared, with 
varying degrees of complexity.  One of the most ambitious simulators  to date is 
Robotics studio from Microsoft, which allows the user to simulate many of the 
commercially available mobile robots, or even to assemble a (vir- 
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tual) robot using generic parts. 
Some simulators include not only general simulation of the kinematic and 

dynamics of robots, but also procedures for stochastic optimization. Some ex- amples 
of such simulators are Webots, which is manufactured by Cyberbotics 
(www.cyberbotics.com) and the open source package Darwin2K, which can be 
found at darwin2k.sourceforge.net. 

The Adaptive systems research group at Chalmers has developed a simu- lator 
called the General-purpose robotic simulator (GPRSim), which is exten- sively used 
in our research projects. Unlike the other simulators mentioned above, GPRSim 
features, as an integral part of the simulator, an implementa- tion of the general-
purpose robotic brain structure (GPRBS) (also developed in the Adaptive systems 
research group). The GPRBS, in turn, consists of a standardized representation of a 
robotic brain, consisting of a set of so called brain processes as well as a decision-
making system. This structure allows re- searchers to build complex robotic brains 
involving many different behavioral aspects and also to export the resulting robotic 
brain for use in real (physical) robots. The existence of a standardized representation 
for robotic brains also makes it possible, for example, to reuse parts of a previously 
developed robotic brain in other applications than the original one. 

However, GPRSim is primarily a research tool and, as such, it is not very user-
friendly. Moreover, the underlying code is quite complex. Thus, in this course, a 
different simulator will be used, namely the Autonomous robot sim- ulator (ARSim), 
which is a 2D simulator written in Matlab. This simulator is generally too slow to be 
useful in research projects, but it is perfectly suited to most of the tasks considered in 
this course. Note also that, even though ARSim is greatly simplified, many parts of the 
code (for example the simulation of DC motors, IR sensors etc.) are essentially the 
same in GPRSim and ARSim 

 
3.4 General simulation issues 

In Fig. 3.1, the general flow of a single-robot simulation is shown. Basically, after 
initialization, the simulation proceeds in a stepwise fashion. In each step, the simulator 
reads the sensors of the robot, and the resulting signals are sent to the robotic brain, 
which computes appropriate motor signals that, finally, are sent to the motors. Given 
the motor signals, the acceleration of the robot can be updated, and new velocities 
and positions can be computed. Changes to the arena (if any) are then made, and the 
termination criteria are checked. 

 
3.4.1 Timing of events 

As mentioned earlier, simulation results in robotics must be validated in an actual 
robot. However, in order for this to be possible, some care must be 
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Figure 3.1: The flow of a single-robot simulation. Steps 1 through 6 are carried out in each 

time step of the simulation. 

 
taken, particularly regarding steps 1-3. To be specific, one must make sure that these 
steps can be executed (on the real robot) in a time which does not exceed the time 
step length in the simulation. Here, it is important to distinguish between two different 
types of events, namely (1) those events that take a long time to complete in simulation, 
but would take a very short time in a real robot, and (2) those events that are carried 
out rapidly in simulation, but would take a long time to complete in a real robot. 

An example of an event of type (1) is collision-checking.   If performed    in a 
straight-forward, brute-force way, the possibility of a collision between the (circular, 
say) body of the robot and an object must be checked by going through all lines in a 
2D-projection of the arena. A better way (used, for ex- ample, in GPRSim) is to 
introduce an invisible grid, and only check for colli- sions between the robot and those 
objects that (partially) cover the grid cells that are also covered by the robot. However, 
even when such a procedure is used, collision-checking may nevertheless be very 
time-consuming in simula- tion whereas, in a real robot, it amounts simply to reading a 
bumper sensor (or, as on the Boe-bot, a whisker), and transferring the signal (which, in 
this case, is binary, i.e. a single bit of information) from the sensor to the brain of the 
robot. Events of this type cause no (timing) problems at the stage of transferring the 
results to a real robot, even though they may slow down the simulation con- siderably. 

An example of an event of type (2) is the reading of sensors. For exam- ple, an IR 
sensor can be modelled using simple ray-tracing (see below) and, provided that the 
number of rays used is not too large, the update can be car- 

5. Update arena 

4. Move robot 

3. Compute motor signals 

2. Process information 

1. Obtain sensor readings Initialize 

6. Check termination criteria 
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Figure 3.2: A timing diagram. The boxes indicate the time required to complete the corre- 

sponding event in hardware, i.e. a real robot. In order for the simulation to be realistic, the 

time step ∆t used in the simulation must be longer than the total duration (in hardware) of all 

events taking place within a time step. 

 

ried out in a matter of microseconds in a simulator. However, in a real robot it might 
take longer time. While the reading of an IR sensor involves a very limited signal flow 
compared to the reading of a camera with, say, 640 480 pixels, the transfer of the 
reading from the sensor to the robotic brain is a po- tential bottleneck. A common 
setup is to have a microcontroller (see Chapter 
1) handling the low-level communication, i.e. obtaining sensor readings and sending 
signals to actuators, and a PC (for example, a laptop placed on the robot) handling 
high-level issues, such as decision-making, motion planning etc. Very often, the 
communication between the laptop and the microcontroller takes place through a serial 
port, operating with a speed of, say, 9600 or 38400 bits/s. If the onboard PC must 
read, for example, four proximity sensors (as- suming one byte per reading) and send 
signals to two motors (again assuming that each signal requires one byte), a total of 
6 8 = 48 bits is needed, lim- iting the number of interactions between the PC and the 
microcontroller to 9600/48  =  200  per  second  in  the  case  of  a  serial  port  speed  of  
9600  bits/s. As another, more specific, example, consider the small mobile robot 
Khepera, shown in the left panel of Fig. 1.5. In its standard configuration, it is equipped 
with eight IR sensors, which are read in a sequential way every 2.5 ms, so that the 
processor of the robot receives an update of a given IR sensor’s reading every 20 ms. 
The updating frequency of the sensors is therefore limited to 50 Hz. Thus, a simulation 
of a Khepera robot in which the simulated sensors are updated with a frequency of, 
say, 100 Hz would be unrealistic. 

In practice, the problem of limited updating frequency in sensors can be solved by 
introducing a Boolean readability state for each (simulated) sensor. Thus, in the case 
of a Khepera simulation with a time step of 0.01s, the sensor values would be updated 
only every other time step. Step 2, i.e. the processing of information by the brain of the 
robot, must also, in a realistic simulation, be of limited complexity so that the three 
steps (1, 2, and 3) together can be carried 

 

  
Read 
first IR 
sensor 

 

Read 
second IR 
sensor 
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out within the duration ∆t (the simulation time step) when transferred to the real robot. 
An example of a timing diagram for a generic robot (not Khepera) is shown in Fig. 3.2. 
In the case shown in the figure, two IR proximity sensors are read, the information is 
processed (for example, by being passed through an artificial neural network), and 
the motor signals (voltages, in the case of standard DC motors) are then transferred 
to the motors. The figure shows a case which could be realistically simulated, with the 
given time step length 
∆t. However, if two additional IR sensors were to be added, the simulation would 
become unrealistic: The real robot would not be able to complete all steps during the 
time ∆t. 

For the simple robotic brains considered in this course, step 2 would gener- ally be 
carried out almost instantaneously (compared to step 1) in a real robot. Similarly, the 
transfer of motor signals to a DC motor is normally very rapid (note, however, that the 
dynamics of the motors may be such that it is pointless to send commands with a 
frequency exceeding a certain threshold). 

To summarize, a sequence of events that takes, say, several seconds per time 
step to complete in simulation (e.g. the case of collision-checking in a very complex 
arena) may be perfectly simple to transfer to a real robot, whereas a sequence of 
events (such as the reading of a large set of IR sensors) that can be completed almost 
instantaneously in a simulated robot, may simply not be transferable to a real robot, 
unless a dedicated processor for signal processing and signal transfer is used. 

 
3.4.2 Noise 

Another aspect that should be considered in simulations is noise. Real sensors and 
actuators are invariably noisy, on several levels. Furthermore, even sen- sors that are 
supposed to be identical often show very different characteristics in practice. In 
addition, regardless of the noise level of a particular sensor, the frequency with which 
readings can be updated is limited, thus introducing another source of noise, in certain 
cases. For example, the limited sampling frequency of wheel encoders implies that, 
even in the (unrealistic) case where the kinematic model is perfect and there are no 
other sources of noise, the in- tegrals in the kinematic equations (Eqs. (2.7)-(2.9)) can 
only be approximately computed. 

Thus, in any realistic robot simulation, noise must be added, at all relevant levels. 
Noise can be added in several different ways. A common method (used in GPRSim 
and ARSim) is to take the original reading S of a sensor and add noise to form the 

actual reading Ŝ as 

Ŝ = SN (1, σ), (3.1) 

where N (1, σ) denotes the normal (Gaussian) distribution with mean 1 and 
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standard deviation σ. Of course, other distributions (e.g. a uniform distribu- tion) can 
be used as well. 

An alternative method is to take some measurements of a real sensor and store 
the readings in a lookup table, which is then used by the simulated robot. For example, 
in the case of an IR sensor with a range of, say, 0.5 m, one may, for example, take 10 
readings each at distances of 0.05, 0.10, . . . , 0.50 m, and store those readings in a 
matrix. In the simulator, when the IR sensor is used, the distance L to the nearest 
obstacle is determined, and the reading is then obtained by interpolating linearly 
between two samples from the lookup table. For example, if L  =  0.23 m, a randomly 
chosen sample ŝ20 is taken from the 10 readings stored for L = 0.20 m, and another 
randomly chosen sample ŝ25 is taken from the readings stored for L = 0.25 m. The 
reading of the simulated sensor is then taken as 

Ŝ = ŝ  + 
0.23 − 0.20 

(ŝ
 − 

ŝ 
 

) (3.2) 

0.25 − 0.20 
 

This method has the advantage of forming simulated readings from actual sensor 
readings, rather than introducing a model for the noise. Furthermore, using lookup 
tables, it is straightforward to account for the individual nature of supposedly identical 
sensors. However, a clear disadvantage is the need for generating the lookup tables, 
which often must contain a very large number of samples taken not only at various 
distances, but also, perhaps, at various angles between the forward direction of the 
sensor and the surface of the obstacle. Thus, the first method, using a specific noise 
distribution, is normally used instead. 

 
3.4.3 Sensing 

In addition to correct timing of events and the addition of noise in sensors and 
actuators, it is necessary to make sure that the sensory signals received by the 
simulated robot do not contain more information than could be provided by the 
sensors of the corresponding real robot. For example, in the simulation of a robot 
equipped only with wheel encoders (for odometry), it is not allowed to provide the 
simulated robot with continuously updated and error-free po- sition measurements. 
Instead, the simulated wheel encoders, including noise and other inaccuracies, should 
be the only source of information regarding the position of the simulated robot. 

In both GPRSim and ARSim, several different sensors have been imple- mented, 
namely (1) wheel encoders, (2) IR proximity sensors, and (3) com- passes. In 
addition, GPRSim (but not ARSim) also features (4) sonar sensors and (5) laser range 
finders (LRFs). An important subclass of (simulated) sen- sors are ray-based 
sensors, which use a simple form of ray tracing in order to 

20 25 
20 
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form their reading(s). Examples of ray-based sensors are IR proximity sensors, sonar 
sensors, and laser range finders. 

Now, the different natures of, say, an IR sensor, which gives a fuzzy read- ing 
based on infrared light, and an LRF, which gives very accurate readings (in many 
directions) based on laser light, imply that slightly different procedures must be used 
when forming the (simulated) sensor readings of those two sen- sor types. However, 
in both cases, the simulation of the sensor requires ray tracing, which will now be 
considered. 

 
Ray-based sensors  In ray-based sensors,  the formation of sensor readings   is 
based on the concept of sensor rays. Basically, a number of rays are sent out from 
a sensor, in various directions (depending on the opening angle of the sensor), and 
the distance to the nearest obstacle is determined. If no ob- stacle is available within 
the range of the sensor, the ray in question provides no reading. Of course, in order 
to obtain any ray reading, not only the robot must be available, but also the objects 
(e.g. walls and furniture) located in the arena in which the robot is operating. In 
GPRSim, objects are built from boxes and cylinders. Boxes are represented as a 
sequence of six planes, whereas (the mantle surface of) cylinders are represented by 
a sufficient number of planes (usually around 10-20) to approximate the circular cross 
section of the cylinder. The ray readings are thus obtained using general equations 

for line- plane intersections1. Here, however, we shall only consider the simpler two- 
dimensional case, in which all surfaces are vertical and where the sensors are 
oriented such that all emitted rays are parallel to the ground. In such cases, the arena 
objects can be represented simply as a sequence of lines in two dimen- sions. Indeed, 
this is how objects are represented in ARSim. 

An example of such a configuration is shown in Fig. 3.3. The left panel shows a 
screenshot from GPRSim, in which an LRF mounted on top of a robot takes a reading 
in an arena containing only walls. The right panel shows a two- dimensional 
representation of the arena and the LRF (the body of the robot is not shown). Given 
the exact position of a ray’s starting point, as well as the range of the corresponding 
sensor, it is possible to determine the distance be- tween the ray and the nearest 
obstacle using general equations for line-line intersection, which will be described 
next. However, it should first be noted that, even though the simulator of course uses 
the exact position of the robot and its sensors in order to compute sensor readings, 
the robot (or, more specif- ically, its brain) is only provided with information regarding 
the actual sensor readings. 

Consider now a single sensor ray. Given the start and end points of the 
 

1In order to speed up the simulator, a grid (also used in collision checking) is used, such that only 

those obstacles that are (partially) located in the grid cells currently covered by the sensor are 

considered. 
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Figure 3.3: Left panel: A screenshot from GPRSim, showing an LRF taking a reading in an 

arena containing only walls. Right panel: A two-dimensional representation of the sensor 

reading. The dotted ray points in the forward direction of the robot which, in this case, coincides 

with the forward direction of the LRF. 

 
ray, its equation can be determined. Let (xa, ya) denote the start point for the ray (which 
will be equal to the position of the sensor, if the size of the latter can be neglected). 
Once the absolute direction (βi) of the sensor ray has been determined, the end point 
(xb, yb) of an unobstructed ray (i.e. one that does not hit any obstacle) can be obtained 
as 

 

(xb, yb) = (xa + D cos βi, ya + D sin βi), (3.3) 

where D denotes the sensor range. Similarly, any line corresponding to the side of an 

arena object can be defined using the coordinates of its start and end points. Note 

that, in Fig. 3.3, all lines defining arena objects coincide with coordinate axes, but this 

is, of course, not always the case. Now, in the case of two lines of infinite length, 

defined by the equations yk =  ck  + dkx,  k  =  1, 2,  it is trivial to find the intersection 

point (if any) simply by setting y1 = y2. However, here we are dealing with line segments 

of finite length. In this case, the intersection point can be determined as follows: 

Letting P
a
 = (x

a
, y

a
) and i i i 

P
b
 = (x

b
, y

b
) , denote the start and end points, respectively, of line i, i = 1, 2, 

i i i 

the equations for an arbitrary point Pi along the two line segments can be 
written 

P1 = P
a
 + t 

.
P

b
 − P

a
Σ 

, (3.4) 

 
and 

1 1 1 

P2 = P
a
 + u 

.
P

b
 − P

a
Σ 

, (3.5) 
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where (t, u) ∈ [0, 1]. Solving the equation P1 = P2 for t and u gives, after some 



CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 187
 

187  

γ 

Σ 

2 2 1 1 2 2 1 1 

1 1 1 

 
algebra, 

(x
b
 − x

a
)(y

a
 − y

a
) − (y

b
 − y

a
)(x

a
 − x

a
) 

(yb − ya)(xb − xa) − (xb − xa)(yb − ya) 

 

(3.6) 

and 
2 2 1 1 2 2 1 1 

(x
b
 − x

a
)(y

a
 − y

a
) − (y

b
 − y

a
)(x

a
 − x

a
) 

(yb − ya)(xb − xa) − (xb − xa)(yb − 

ya) 

(3.7) 

An intersection occurs if both t and u are in the range [0, 1]. Assuming that the first 
line (with points given by P1) is the sensor ray, the distance d between the sensor and 
the obstacle, along the ray in question, can then easily be formed by simply 
determining P1 using the t value found, and computing 

d = |P1 − P
a
| = |t(P

b
 − P

a
)|. (3.8) 

If the two lines happen to be parallel, the denominator becomes equal to zero2. Thus, 
this case must be handled separately. 

In simulations, for any time step during which the readings of a particular sensor 
are to be obtained, the first step is to determine the origin of the sensor rays (i.e. the 
position of the sensor), as well as their directions. An example is shown in Fig. 3.4. 
Here, a sensor is placed at a point ps, relative to the center of the robot. The absolute 
position Ps (relative to an external, fixed coordinate system) is given by 

Ps = X + ps, (3.9) 

where X = (X, Y ) is the position of the (center of mass of the) robot. Assuming that the 
front direction of the sensor is at an angle α relative to the direction of heading (ϕ) of 
the robot, and that the sensor readings are to be formed using N equally spaced rays 
over an opening angle of γ, the absolute direction βi of the i

th
 ray equals 

 
where δγ is given by 

βi = ϕ + α − 
2 

+ (i − 1)δγ, (3.10) 

γ 

δγ =   

N − 

1 

. (3.11) 

Now, the use of the ray readings differs between different simulated sensors. Let us 
first consider a simulated IR sensor. Here, the set of sensor rays is used only as an 
artificial construct needed when forming the rather fuzzy reading of such a sensor. In 
this case, the rays themselves are merely a convenient com- putational tool. Thus, for 
IR sensors, the robotic brain is not given information regarding the individual rays. 
Instead, only the complete reading S is pro- vided, and it is given by 

   S =
 1

 

N 

N 

ρi, (3.12) 

i=1 

t = 

u = 

        

2 2 1 2 2 2 1 2 

 

        

1 1 1 2 1 1 1 2 
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2In case the two lines are not only parallel but also coincident, both the numerators and the 

denominators are equal to zero in the equations for t and u. 
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Figure 3.4: The right panel shows a robot equipped with two IR sensors, and the left panel 

shows a blow-up of the left sensor. In this case, the number of rays (N) was equal to 5. The 

leftmost and rightmost rays, which also indicate the opening angle γ of the IR sensor are shown 

as solid lines, whereas the three intermediate rays are shown as dotted lines. 

 
where ρi is the ray reading of ray i. Ideally, the value of N should be very large for the 
simulated sensor to represent accurately a real IR sensor. However, in practice, rather 
small values of N (3-5, say) is used in simulation, so that the reading can be obtained 
quickly. The loss of accuracy is rarely important, since the (fuzzy) reading of an IR 
sensor is normally used only for proximity detec- tion (rather than, say, mapping or 
localization). An illustration of a simulated IR sensor is given in Fig. 3.4. 

A common phenomenological model for IR sensor readings (used in GPRSim and 
ARSim) defines ρi as 

ρ = min 

.. 
c1 

+ c 

Σ 

cos κ , 1

Σ 

, (3.13) 

i 2 2 i 

i 

where c1 and c2 are non-negative constants, di > 0 is the distance to the nearest object 
along ray i, and 

κi = − 
2 

+ (i − 1)δγ, (3.14) 

is the relative ray angle of ray i. If di > D (the range of the sensor), ρi = 0. Note that 
it is assumed that κi       [   π/2, π/2],  i.e. the opening angle cannot exceed π  radians.   
Typical opening angles are π/2 or less.   It should also be noted that this IR sensor 
model has limitations; for example, the model does not take into account the 
orientation of the obstacle’s surface (relative to the direction of the sensor rays) and 
neither does it account for the different IR reflectivity of different materials. 

For simulated sonar sensors (which are included in GPRSim but not in AR- Sim), 
the rays are also only used as a convenient computational tool, but the 
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final reading S is formed in a different way. Typically, sonar sensors give rather accurate 
distance measurements in the range [Dmin, Dmax], but sometimes fail  to give a reading 
at all. Thus, in GPRSim, the reading of a sonar sensor is formed as S = minidi with 
probability p and Dmax (no detection) with proba- bility 1    p.  Also, if S  <  Dmin  the reading 
is set to Dmin.  Typically,  the value of p is very close to 1. The number of rays (N ) is 
usually around 3 for simulated sonars. 

A simulated LRF, by contrast, gives a vector-valued reading, S, where each 
component Si is obtained simply as the distance di to the nearest obstacle along the 
ray. Thus, for LRFs, the sensor rays have a specific physical interpretation, made 
possible by the fact that the laser beam emitted by an LRF is very narrow. In GPRSim, 
if di > D, the corresponding laser ray reading is set to -1, to indi- cate the absence of 
any obstacle within range of the ray in question. Note that LRFs are only implemented 
in GPRSim. It would not be difficult to add such a sensor to ARSim, but since an LRF 
typically takes readings in 1,000 different directions (thus requiring the same number 
of rays), such sensors would make ARSim run very slowly. 

As a final remark regarding ray-based sensors, it should be noted that a given 
sensor ray i may intersect several arena object lines (see, for example, Fig. 3.3) In 
such cases, di is taken as the shortest distance obtained for the ray. 

 
3.4.4 Actuators 

A commonly used actuator in mobile robots is the DC motor. The equations describing 
such motors are given in Chapter 1. 

In both GPRSim and ARSim, a standard DC motor has been implemented. In this 
motor, the input signal is the applied voltage. Both the electrical and mechanical 
dynamics of the motors are neglected.  Thus the torque acting   on the motor shaft 
axis is given by Eqs. (1.8) and (1.9). Gears are imple- mented in both simulators, so 
that the torques acting on the wheels are given by Eqs. (1.10). However, the 
simulators also include the possibility of setting a maximum torque τmax which cannot 

be exceeded, regardless of the output torque τout obtained from Eqs. (1.10). 

In addition, GPRSim (but not ARSim) also allows simulation of velocity- 
regulated motors. Unlike the voltage signal used in the standard DC motor, a 
velocity-regulated motor takes as input a desired reference speed vref for the wheel 
attached to the motor axis. The robot then tries to reach this speed value, using 
proportional control. The actual output torque of a velocity-regulated motor is given 
by 

τ  = K (vref − v) (3.15) 

In this model, a change in vref generates an immediate change in the torque. In a real 
motor, the torques cannot change instantaneously.  However, Eq. (3.15) 
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Figure 3.5: Left panel: A simulated robot (from GPRSim), consisting of more than 100 objects. 

Right panel: An example (in blue) of a collision geometry. 

 

usually provides a sufficiently accurate estimate of the torque. As in the case of the 
standard DC motor, there is also a maximum torque τmax for velocity- regulated motors. 

Note that, if velocity-regulated motors are to be used, the robot must be equipped 
with wheel encoders to allow the computation of odometric esti- mates of the wheel 
speeds. 

 
3.4.5 Collision checking 

A real robot should normally be very careful not to collide with an obstacle (or, worse, a 
person). In simulations, however, one may allow collisions, for exam- ple during 
simulations involving stochastic optimization, where the robotic brains in the early 
stages of an optimization run may be unable to avoid colli- sions. In any case, 
collisions should, of course, be detected. 

In GPRSim the concept of a collision geometry is used when checking for 
collisions. The collision geometry is a set of vertical planes in which the body of the 
robot should be contained. It would be possible to check collisions be- tween the 
boxes and cylinders constituting the (simulated) body of the robot. However, it is 
common that the robotic body consists of a very large number of objects, making 
collision-checking very slow indeed. Thus, instead, a sim- pler collision geometry is 
used. An example is given in Fig. 3.5. The left panel shows a simulated robot 
(consisting of more than 100 separate objects), and the right panel shows (in blue) a 
collision geometry for the same robot. 

By contrast, in ARSim the simulated robot is always represented as a circu- lar 
disc. Thus, the collision detection method simply checks for intersections 
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between the circular body of the robot and any line representing a side of an arena 
object. 

 
3.4.6 Motion 

Once the torques acting on the wheels have been generated, the motion of the robot 
is obtained through numerical integration of Eqs. (2.31) and (2.32). In both GPRSim 
and ARSim, the integration is carried out using simple  first- 

order (Euler) integration.   For each time step,  V̇   and ϕ̈  are computed using 

Eqs. (2.31) and (2.32), respectively.  The new values V j and ϕ̇j of V  and ϕ̇  are then 
computed as 

V j = V + V̇    ∆t, (3.16) 

ϕ̇j = ϕ̇ + ϕ̈∆t, (3.17) 

where ∆t is the time step length (typically set to 0.01 s). The value of ϕ is then updated, 
using the equation 

 

ϕj = ϕ + ϕ̇j∆t, (3.18) 

The cartesian components of the velocity are then obtained as 

Vx
j  = V j cos ϕ, (3.19) 

Vy
j  = V j sin ϕ. (3.20) 

Finally, given Vx
j and Vy

j, the new positions Xj and Y j can be computed as 

Xj = X + Vx
j∆t, (3.21) 

Y j = Y  + Vy
j∆t. (3.22) 

In addition, if wheel encoders are used, both GPRSim and ARSim also keep track of 
the rotation of each wheel, for possible use in odometry (if available). 

 
3.4.7 Robotic brain 

While the physical components of a robot, such as its sensors and motors, of- ten 
remain unchanged between simulations, the robotic brain must, of course, be adapted 
to the task at hand. Robotic brains can be implemented in many different ways. 

In behavior-based robotics (BBR) the brain of a robot is built from a reper- toire 

(i.e. a set) of basic behaviors, as well as a decision-making procedure, selecting which 

behavior(s) to activate at any given time. In the General- purpose robotic brain 

structure (GPRBS), developed in the author’s research group, the robotic brain is 

built from a set of brain processes, some of which 
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are motor behaviors (that make use of the robot’s motors) and some of which are 
cognitive processes, i.e. processes that do not make use of any motors. In addition, 
GPRBS features a decision-making system based on the concept of utility. One of the 
main properties of GPRBS is that this structure allows sev- eral processes to run in 
parallel, making it possible to build complex robotic brains. In fact, the specific aim of 
the development of GPRBS is to move be- yond the often very simple robotic brains 
defined within standard BBR. 

In GPRBS, all brain processes are specified in a standardized format, which 
simplifies the development of new brain processes, since many parts of an already 
existent process often can be used when writing a new process. How- ever, at the 
same time, GPRBS (as implemented in GPRSim) is a bit complex to use, especially 
since it is intended for use in research, rather than as an edu- cational tool. Thus, in 
this course, ARSim will be used instead. This simulator allows the user to write simple 
brain processes (as well as a basic decision- making system) in any desired format 
(i.e. without using GPRBS). Methods for writing brain processes will be described 
further in a later chapter. 

 
3.3 Brief introduction to ARSim 

The simplest way to acquaint oneself with ARSim is to run and analyze the test program 
distributed with the program. In order to do so, start Matlab, move to the right directory 
and write 

 
>> TestRunRobot 

 

and press return. The robot appears in a quadratic arena with four walls and two 
obstacles, as shown in Fig. 3.6. The robot is shown as a circle, and its di- rection of 
motion is indicated by a thin line. The IR sensors (of which there are two in the default 
simulation) are shown as smaller circles. The rays used for determining the sensor 
readings (three per sensor, per default) are shown as lines emanating from the 
sensors. In the default simulation, the robot executes 1,000 time steps of length 0.01 
s, unless it is interrupted by a collision with an obstacle or a wall. 

The flow of the simulation basically follows the structure given in Fig. 3.1. The first 
lines of code in the TestRunRobot.m file are devoted to adding the various ARSim 
function libraries to Matlab’s search path. The arena objects are then created and 
added to the arena. Next, the brain of the robot is created (by a call to CreateBrain), 
and the setup is completed by creating the sensors and motors, and adding them to 
the robot. 

Before the actual simulation starts, the robot’s position, heading, velocity, and 
angular speed are set, and the plot of the arena (including the robot) is created. 
Optionally, a variable motionResults, storing information about 
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Figure 3.6: A typical screenshot from an ARSim simulation. The black lines emanating from 

the two IR proximity sensors of the robot are the rays used for determining sensor readings. 

 
the robot’s motion, can be created. 

ARSim then executes the actual simulation. Each time step begins with the 
sensors being read. First, the readings of all ray-based sensors (a category in which 
only IR sensors have been implemented in ARSim, so far) are obtained. Next, the 
odometer and compass readings are obtained (provided, of course, that the robot is 
equipped with those sensors. Next, the robotic brain processes the sensory 
information (by executing the BrainStep function), producing motor signals, which 
are used by the MoveRobot function. Finally, a collision check is carried out. 

In normal usage, only a few of ARSim’s functions need be modified, namely 
CreateBrain, in which the parameters of the brain are set, BrainStep, which 
determines the processing carried out by the robotic brain, and, of course, the main file 
(i.e. TestRunRobot in the default simulation), where the setup of the arena and the 
robot are carried out. Normally, no other Matlab func- tions should be modified unless, 
for example, one wants to modify the plot procedure. 

Note that, by default, the rays involved in the computation of the IR sensor readings 
are not plotted. In order to plot the sensor rays, one must set the pa- rameter 
ShowSensorRays to true. If the robot is equipped with an odome- ter, one can plot 
also the position and heading estimated by the odometer, by setting the parameter 
ShowOdometricGhost to true. A brief description of the Matlab functions contained 
in ARSim is given in Appendix A. 
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4 

Animal behavior 

 
The behavior-based approach to robotics is strongly influenced by animal be- havior. 
Before studying robotics, it is therefore appropriate to learn some of the basics of this 
topic. Of course, animal behavior is a vast topic, and in this chapter we shall only 
study a few examples. 

Two important examples are decision-making, which will be introduced briefly in 
Subsect. 4.4.2 below, and navigation, which is considered in Sub- sect. 4.4.4. 

 
 

4.1 Introduction and motivation 

Animal behavior is important as a source of inspiration for all work involv- ing 
autonomous robots. Animals are able to function more or less perfectly  in their 
environment, and to adapt to changes in it. Models of animal behav- ior, both low-level 
models involving individual neurons, and high-level phe- nomenological models, can 
serve as an inspiration for the development of the corresponding behavior in robots. 
Furthermore, animals are generally experts in allocating time in an optimal or near-
optimal fashion to the many activities (such as eating, sleeping, drinking, foraging etc.) 
that they must carry out in various circumstances, and lessons concerning behavior 
selection in animals can give important clues to the solution of similar problems in 
robotics. 

It should be noted that, in the behavior-based approach to robotics (intro- duced 
in detail in Chapter 5) one uses a more generous definition of intelligent behavior than 
in classical artificial intelligence, which was strongly centered on high-level behavior 
(e.g. reasoning about abstract things) in humans. By contrast, in behavior-based 
robotics, simple behaviors in animals, such as re- flexes and gradient-following (taxis), 
play a very important role, as will be seen during this course. 
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4.2 Bottom-up approaches vs. top-down approaches 

As is the case with many different topics in science, animal behavior can be studied 
using either a bottom-up approach or a top-down approach. The bottom-up 
approach can, in principle, lead to a more complete and detailed understanding of the 
objects or organisms under study. However, in suffi- ciently complex systems, the 
bottom-up approach may fail to give important insights. For example, when using a 
computer, it is not necessary to know ex- actly how the computer manipulates and 
stores information down to the level of individual electrons. Even without such detailed 
knowledge, it is certainly possible to use the computer, if only one has information 
regarding how to program it. 

Similarly, in animal behavior, even very simple, top-down models can lead to a 
good understanding of seemingly complex behavior, as will be shown below in the 
example of the orientation of bacteria. 

On the other hand, a bottom-up study (on the level of individual neurons) can 
reveal many important aspects of relatively simple animals, such as e.g. the much-
studied worm C. Elegans or the sea-slug Aplysia.  The neural level  is relevant also in 
the field of autonomous robotics, where simple behaviors are often implemented 
using neural network architectures. However, in such cases, the networks are most 
often used as black-box models (obtained, for example, by means of artificial 
evolution). 

 
4.3 Nervous systems of animals 

In essence, the brain of vertebrates consists of three structures namely, the fore- brain, 
the midbrain, and the hindbrain. The central nervous system (CNS) consists of 
the brain and the spinal cord. In addition to the CNS, there is the peripheral nervous 
system, which consists of sensory neurons that carry in- formation to the CNS and 
motor neurons that carry motor signals from the CNS to muscles and glands (see 
below). The peripheral nervous system can be sub-divided into the somatic nervous 
system, that deals with the external environment (through sensors and muscles) and 
the autonomic nervous sys- tem which provides the control of internal organs such 
as the heart and lungs. The autonomic nervous system is generally associated with 
involuntary ac- tions, such heart beat and breathing. 

It is interesting to note that the embryological development of different ver- tebrates 
is quite similar: During development, a neural tube is differentiated into a brain and a 
spinal cord. 

Note that the presence of a nervous system is not a prerequisite for all forms of 
intelligent behavior: Even single-celled organisms (which, clearly, cannot contain a 
CNS: Neurons are cells), are able to exhibit rudimentary intelligent 
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behavior. An example involving bacteria will be given below. 

In addition to the nervous system, there is a parallel system for feedback in the 
body of animals, namely the endocrine system. The glands of the en- docrine 
system release hormones (into the blood stream) that influence body and behavior. 
For example, elevated levels of the hormone angiotensin (whose source is the kidney) 
lead to a feeling of thirst, whereas adrenaline is involved in fight-or-flight reactions 
(fear, anxiety, aggression). Hormone release by the endocrine system is controlled 
either directly by the brain or by (the levels of) other hormones. 

Emotions such as fear, and the resulting survival-related reactions, such as fleeing 
from a predator are, of course, very important for the survival of ani- mals and it is 
therefore perhaps not surprising that robotics researchers have begun considering 
artificial emotions in robots. Furthermore, the use of arti- ficial hormones in the 
modulation of behavior and for behavior selection in autonomous robots has been 
studied as well. 

 
 

4.4 Ethology 

Historically, different approaches to animal behavior were considered in Eu- rope and 
the USA: European scientists, such as the winners of the 1972 Nobel prize for 
medicine or physiology, Lorenz, Tinbergen, and von Frisch, generally were concerned 
with the study of the behavior of animals in their natural en- vironment. Indeed, the 
term ethology can be defined as the study of animals in their natural environment. By 
contrast, American scientists working with animal behavior generally performed 
experiments in controlled environments (e.g. a laboratory). This field of research is 
termed comparative psychology. 

Both approaches have advantages and disadvantages: The controlled ex- 
periments carried out within comparative psychology allow more rigor than the 
observational activities of ethologists, but the behaviors considered in such 
experiments may, on the other hand, differ strongly from the behaviors exhib- ited by 
animals in their natural environment. 

However, in both approaches, phenomenological models are used, i.e. mod- els 
which can describe (and make predictions) concerning, for example, a cer- tain 
behavior, without modelling the detailed neural activities responsible for the behavior. 
Indeed, many ethological models introduce purely artificial con- cepts (such as 
action-specific energy in Lorenz’ model for animal motivation), which, nevertheless, 
may offer insight into the workings of a behavior. 

On the following pages, the major classes of animal behavior will be intro- duced 
and described. 
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4.4.1 Reflexes 

Reflexes, the simplest forms of behavior, are involuntary reactions to exter- nal 
stimuli. An example is the withdrawal reflex, which is present even in very simple 
animals (and, of course, in humans as well). However, even re- flexes show a certain 
degree of modulation. For example, some reflexes exhibit warm-up, meaning that 
they do not reach their maximum intensity instanta- neously (an example is the 
scratch reflex in dogs). Also, reflexes may exhibit fatigue, by which is meant a 
reduced, and ultimately disappearing, intensity even if the stimulus remains 
unchanged. Two obvious reasons for fatigue may be muscular or sensory exhaustion, 
i.e. either an inability to move or an inabil- ity to sense. However, these explanations 
are often wrong, since the animal may be perfectly capable of carrying out other 
actions, involving both muscles and sensors, even though it fails to show the particular 
reflex response under study. An alternative explanation concerns neural exhaustion, 
i.e. an inability of the nervous system to transmit signals (possibly as a result of 

neurotrans- mitter depletion). An example1 is the behavior of Sarcophagus (don’t ask 
- you don’t want to know) larvae. These animals generally move away from light. 
However, if placed in a tunnel, illuminated at the entrance, and with a dead end (no 
pun intended), they move to the end of the tunnel, turn around, and move towards the 
light, out of the tunnel. This is interesting, since these larvae will (if not constrained) 
always move away from light. However, this is neither a case of muscular exhaustion 
nor sensory exhaustion. Instead, the larvae have simply exhausted their neural circuits 
responsible for the turning behavior. 

 
4.4.2 Kineses and taxes 

Another form of elementary behavior is orientation of motion, either towards an object, 
substance, or other stimulus, or away from it. In taxis, the animal follows a gradient 
in a stimulus such as a chemical (chemotaxis) or a light source (phototaxis). Typical 
examples are pheromone trail following in (some) ants, an example of chemotaxis, 
and the motion towards a light source by fly maggots. It is easy to understand how 
such phototaxis occurs: the maggots compare the light intensity on each side of their 
bodies, and can thus estimate the light gradient. Motion towards a higher 
concentration (of food, for exam- ple), is exhibited even by very simple organisms, 
such as bacteria. One may be tempted to use the same explanation, i.e. comparison 
of concentrations on different sides of the body, for this case as well. However, 
bacteria are simply too small for the gradient (across their minuscule bodies) to be 
measurable. In the case of the common E. Coli bacterium, concentration differences 
as small as one part in 10,000 would have to be detectable in order for the organism 
to 

 

1See Essentials of animal behavior, by P.J.B. Slater. 
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follow the gradient in the same way as the fly maggots do. Interestingly, E. Coli bacteria 
are nevertheless able to move towards, and accumulate in, regions of high food 
concentration, an ability which is exploited by another predatory bacterium, M. 

Xanthus, which secretes a substance that attracts E. Coli in what Shi and Zusman2 

has called “fatal attraction”. The fact that the M. Xanthus are able to feed on E. Coli 
is made all the more interesting by the fact that the latter move around 200 times faster 
than the former. Now two questions arise: How do the E. Coli find regions of higher 
food concentration, and how do the 

M. Xanthus catch them? 

 
Case study: Behavior selection in E. Coli 

Interestingly, a very simple model can account for the ability of E. Coli to move towards 
regions of higher concentration. Essentially, the E. Coli bac- teria have two behaviors, 
straight-line movement, and random-walk tumbling. It can be shown experimentally 
that, at any given absolute concentration of an attractant substance, the bacteria 
generally exhibit the tumbling behavior, at least after some time. However, if the 
bacteria are momentarily placed in a region of higher concentration, they begin 
moving in straight lines. Now, this cannot be due to normal gradient following, since 
there is no (spatial) gradi- ent. However, there is a temporal gradient, i.e. a difference 
in concentration over time, and this provides the explanation: While unable to detect 
a spa- tial gradient, the E. Coli bacteria are equipped with a rudimentary short-term 
memory, allowing them to detect a temporal gradient.  The behavior of the 
E. Coli is a simple example of chemotaxis. It is because of its slow motion that the M. 
Xanthus bacterium is able to catch the E. Coli: By releasing an attractant and staying 
in the same area, the M. Xanthus is able to lure the E. Coli to the region, and to keep 
them tumbling there, ending up as food for the M. Xanthus 

- indeed a fatal attraction. 
A simple mathematical model of bacterial chemotaxis can now be formu- lated. 

Consider a bacterium faced with the choice of activating its straight-line movement 
behavior (hereafter: B1) or its tumbling behavior (hereafter: B2), and introduce a 
variable U such that B1 is activated if U > T (where T is the threshold), and B2 

otherwise. Let X be the value of the stimulus (i.e. the con- centration of the 
attractant). Consider now a leaky integrator, given by the equation 

dV (t) 

dt 

+ aV (t) = bX(t). (4.1) 

Now, consider the difference U (t) = X(t) V (t), and set T = 0. In case the bacterium 
experiences an increase X(t) in the concentration of the attracant, U (t) becomes 
positive, thus activating B1. If X remains constant, U (t) slowly 

 

2See Shi, W. and Zusman, D.R. Fatal attraction, Nature 366, pp. 414-415 (1993). 
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Figure 4.1: An illustration of the switch between straight-line swimming and tumbling in E. Coli 

bacteria, based on a model with a single leaky integrator given in Eq. (4.1). The left panel 

shows the variation of the attractant concentration X(t), and the right panel shows U (t). The 

straight-line swimming behavior (B1) is active between t = 1 and t = 3. 

 
falls towards zero (and eventually becomes negative, if b > a). However, if there is a 
decrease in X, i.e. if the bacterium begins to leave the region of high attractant 
concentration, U (t) becomes negative, and B2 is activated, keeping the bacterium 
approximately stationary. Thus, the chemotaxis of E. Coli can be modelled with a 
single leaky integrator. 

Finally, note the importance of taxes in simple behaviors for autonomous robots. 
For example, it is easy (using, for example, two IR sensors) to equip a robot with the 
ability to follow a light gradient. Thus, for example, if a light source is placed next to, 
say, a battery charging station, the robot may achieve long-term autonomy, by 
activating a phototactic behavior whenever the bat- tery level drops below a certain 
threshold. Problems involving such behavior selection in autonomous robots will be 
studied further in later chapters in con- nection with the topic of utility. The simple 
chemotaxis of the E. Coli can be considered as a case of utility-based behavior 
selection, in which one behavior, B2, has a fixed utility T , and the utility of the other, B1, 

is given by U (t). 
Kinesis is an even simpler concept, in which the level of activity (e.g. move- 

ment) of an organism depends on the level of some stimulus, but is undirected. An 
example is the behavior of wood lice: If the ambient humidity is high (a condition 
favored by wood lice), they typically move very little. If the humid- ity drops, they will 
increase their rate of movement. 

 
4.4.3 Fixed action patterns 

The concept of fixed action patterns (FAPs) was introduced to describe more 
complex behaviors that are extended over time (beyond the temporal exten- sion of 
the stimulus) and may involve a sequence of several actions. It should be noted, 
however, that the term FAP is used less frequently today, since it has been observed 
that several aspects of such behaviors are not at all fixed. Some 
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Figure 4.2: The motion of simulated E. Coli bacteria based on the behavior switch defined in 

the main text. 100 bacteria were simulated, and the parameters a and b were both equal to 

1. The attractant had a gaussian distribution, with its peak at the center of the image. The 

threshold was set to 0. The left panel shows the initial distribution of bacteria, and the right 

panel shows the distribution after 10 seconds of simulation, using a time step of 0.01. 

 

behaviors, such as courtship behaviors are, however, quite stereotyped, since they 
are required to be strongly indicative of the species in question. 

An example of an FAP is the egg-retrieving behavior of geese, which is carried out 
to completion (i.e. the goose moves its beak all the way towards its chest) even if the 
egg is removed. 

Another example is the completely stereotyped attack behavior of the pray- ing 
mantis (an insect). Once started, the behavior is always carried out to com- pletion 
regardless of the feedback from the environment (in the case of the praying mantis, 
the attack occurs with terrifying swiftness, making it essen- tially impossible for the 
animal to modulate its actions as a result of sensory feedback). 

In addition to FAPs, another concept which has also fallen out of fashion, is the 
innate releasing mechanism (IRM). An IRM was considered a built-in mechanism, 
characteristic of the species in question, inside the animal which caused it to perform 
some action based on a few salient features of a stimulus. An example of such a sign 
stimulus is the red belly of male stickleback fish in breeding condition. When 
competing for a female, the male stickleback must identify and chase away other 
males. It has been shown in experiments in- volving the presentation of various crude 
models of fish to a male stickleback, that the detection of the red color of the belly of 
other males causes the fish  to assume an aggressive posture (rather than, say, the 
detailed shape of the model, which seems to be more or less irrelevant). Note that 
several aspects 
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of IRMs, e.g. the question of whether they really are inborn mechanisms, have been 
called into question. 

 
4.4.4 Complex behaviors 

As indicated above, many action sequences that were originally described as FAPs 
have been found to have a much more complex dynamics than origi- nally thought. 
Furthermore, many behaviors, such as prey tracking by various mammals, are highly 
adaptive or involve many different aspects (see the case study below), and can hardly 
be called FAPs. 

Animals generally do not simply react to the immediate stimuli available from the 
environment, but maintain also an internal state, which together with the external 
(sensory) stimuli determine which action to take. Behaviors which depend on an 
internal state are said to be motivated, and the study of animal motivation is an 
important part of ethology. In early models of motivation, the concept of drive was 
central. A simple model of motivation, based on drives, is the so called Lorenz’ 
psychohydraulic model, which will not be studied in the detail here, however. While 
Lorenz’ model is simple, intuitive, and ped- agogical, alas it does not fit observations 
of animal behavior very well.  In  the modern view of motivation, a given internal state 
is maintained through a combination of several regulatory mechanisms, and rather 
than postulating the concept of drives for behaviors, the tendency to express a given 
behavior is considered as a combination of several factors, both internal and external. 
The physiological state of the animal (e.g. its temperature, amount of water in the 
body, amount of different nutrients etc.) can be represented as a point in a multi-
dimensional physiological space. In this space, lethal boundaries can be introduced, 
i.e. levels which the particular variable (for example, body temperature) may no 
exceed or fall below. 

The motivational state of the animal is, in this view, generated by the com- 

bination of the physiological state and the perceptual state (i.e. the signals obtained 

through the sensory organs of the animal), and can be represented as a point in a 

motivational space. 

As an example of a complex animal behavior, we shall end this chapter with a 
discussion of desert ant navigation. 

 
Case study: Desert ant navigation 

As mentioned above, many species of ants use pheromone trails during navi- gation. 
However, for desert ants, such as Cataglyphis Fortis, pheromones would not be very 
useful, due to the rapid evaporation in the desert heat. However, when searching for 
food, Cataglyphis is nevertheless capable of navigating over very large distances 
(many thousands of body lengths), and then to return to (and locate) the next on an 
essentially straight line. Locating the nest is no 
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Figure 4.3: A schematic illustration of a typical Cataglyphis trajectory. On the outbound 

journey, away from the nest (shown as a filled disc) the ant moves on a rather irregular path. 

However, when returning, the ant follows a more or less straight trajectory (shown as a thick 

line), following the vector obtained by path integration. 

 
small feat, keeping in mind that the entrance to the nest is a small hole in the ground. 

How does Cataglyphis achieve such accurate navigation? This issue has been 

studied meticulously by Wehner and his colleagues and students3. Their experiments 
have shown that Cataglyphis has the capability of computing dis- tance travelled and 
also to combine the position information thus obtained with heading information 
obtained using an ingenious form of compass, based on the pattern of light polarization 
over the sky. Combining the odometric in- formation with the compass information, 
Cataglyphis is able to carry out path integration, i.e. to determine, at any time, the 
direction vector (from the nest to its current position), regardless of any twists and 
turns during the outbound section of its movement. Once a food item has been found, 
the ant will use the stored direction vector in order to return to the nest on an almost 
straight line. 

 

3See e.g. Wehner, R. Desert ant navigation: how miniature brains solve complex tasks, J Comp 

Physiol, 189, pp. 579-588, 2003. 
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It should be noted that the light polarization patterns varies with the move- ment of 
the sun in the sky. Thus, in order to use its compass over long peri- ods of time, the 
ant also needs an ephemeris function, i.e. a function that de- scribes the position of 
the sun during the day. Experiments have shown that Cataglyphis indeed has such a 
function. 

Even with the path integration, finding the exact spot of the nest is quite difficult: 
As in the case of robotics, the odometric information and the compass angle have 
limited accuracy. However, the tiny brain of Cataglyphis (weighing in at around 0.1 
mg, in a body weighing around 10 mg), is equipped with  yet another amazing skill, 
namely pattern matching: Basically, when leaving its nest, Cataglyphis takes (and 
stores) a visual snapshot (using its eyes) of the scenery around the nest. Then, as 
the ant approaches the nest (as determined by the vector obtained from path 
integration), the ant will match its current view to the stored snapshot, and thus find 
the nest. 

It is interesting to note the similarities between robot navigation (which will be 
described in detail in a later chapter) and Cataglyphis navigation: In both cases, the 
agent (robot or ant) combines path integration with an indepen- dent calibration method 
based on landmark recognition in order to maintain accurate estimates of its pose. 

In fact, the description of Cataglyphis navigation above is greatly simplified. For 
example, the interplay between path integration and landmark detection is quite a 

complex case of decision-making. Furthermore, recent research4 has shown that, in 
the vicinity of the nest, Cataglyphis uses not only visual but also olfactory landmarks 
(that is, landmarks based on odour). This illustrates another important principle, 
namely that of redundancy. If one sensory modal- ity, or a procedure (such as pattern 
matching) derived from it, fails, the agent (robot or ant) should be able to use a 
different sensory modality to achieve its objective. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
4See Steck, K. et al. Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to 

pinpoint the nest, Frontiers in Zoology 6, 2009. 



 

 

 
 
 
 
 
 

5 
Approaches to machine intelligence 

 
The quest to generate intelligent machines has now (2011) been underway for about 
a half century. While much progress has been made during this period of time, the 
intelligence of most mobile robots in use today reaches, at best, the level of insects. 
Indeed, during the last twenty years, many of the efforts in robotics research have 
been inspired by rather simple biological organisms, with the aim of understanding and 
implementing basic, survival-related be- haviors in robots, before proceeding with 
more advanced behaviors involv- ing, for example, high-level reasoning. These efforts 
have been made mainly within the paradigm of behavior-based robotics (BBR), an 
approach to ma- chine intelligence which differs quite significantly from traditional 
artificial intelligence (AI). However, researchers have not (yet) succeeded in 
generat- ing truly intelligent machines using either BBR, AI or a combination thereof. 

This chapter begins with a brief discussion of the paradigms introduced above. 
Next, a more detailed introduction to BBR will be given. Finally, the topic of generating 
basic robotic (motor) behaviors will be considered. 

 
5.1 Classical artificial intelligence 

The field of machine intelligence was founded in the mid 1950s, and is thus a 
comparatively young scientific discipline. It was given the name artificial intelligence 
(AI), as opposed to the natural intelligence displayed by certain biological systems, 
particularly higher animals. The goal of AI was to generate machines capable of 
displaying human–level intelligence. Such machines are required to have the ability 
to reason, make plans for their future actions, and also, of course, to carry out these 
actions. 

However, as noted above, despite a half–century of activity in this area, no 
machines displaying human-level intelligence are, as yet, available. True, there are 
machines that display a limited amount of intelligent behavior, such 
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Figure 5.1: A comparison of the information flow in classical AI (left panel) and in BBR (right 

panel). For BBR, any number of behaviors may be involved, and the figure only shows an 

example involving four behaviors. 

 

as vacuum-cleaning and lawn-mowing robots, and even elevators, automatic trains, 
TV sets and other electronic equipment. However, the intelligence of these machines 
is very far from the human–level intelligence originally aimed at by AI researchers. To 
put it mildly, the construction of artificial systems with human–level intelligence has 
turned out to be difficult. Human–level intelli- gence is, of course, extremely complex, 
and therefore hardly the best starting point. The complex nature of human brains is 
difficult both to understand and to implement, and one may say that the preoccupation 
with human–level intelligence in AI research has probably been the most important 
obstacle to progress. 

In classical AI, the flow of information is as shown in the left panel of   Fig. 5.1. 
First, the sensors of the robot sense the environment. Next, a (usually very complex) 
world model is built, and the robot reasons about the effects of various actions within 
the framework of this world model, before finally de- ciding upon an action, which is 
executed in the real world. Depending on the complexity of the task at hand, the 
modelling and planning phases can be quite time-consuming. Now, this procedure is 
very different from the distributed form of computation found in the brains of biological 
organisms, and, above all, it is generally very slow, strongly reducing its survival value. 
This is not the way biological organisms function. As a good counterexample, 
consider the evasive maneuvers displayed by noctuid moths, as they attempt to 
escape from a pursuing predator (for instance, a bat). A possible way of achieving 
evasive behavior would be to build a model of the world, considering many different 
bat trajectories, and calculating the appropriate response. However, 
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even if the brain of the moth were capable of such a feat (it is not), it would most likely 
find itself eaten before deciding what to do. Instead, moths use a much simpler 
procedure: Their evasive behavior is in fact based on only a few neurons and an 
ingenious positioning of the ears on the body. This simple sys- tem enables the moth 
to fly away from an approaching bat and, if it is unable to shake off the pursuer, start 
to fly erratically (and finally dropping toward the ground) to confuse the predator. 

As one may infer from the left panel of Fig. 5.1, classical AI is strongly fo- cused 
on high-level reasoning, i.e. an advanced cognitive procedure displayed in humans 
and, perhaps, some other mammals. Attempting to emulate such complex biological 
systems has proven to be too complex as a starting-point for research in robotics: 
Classical AI has had great success in many of the sub- fields it has spawned (e.g. 
pattern recognition, path planning etc.), but has made little progress toward the goal 
of generating truly intelligent machines, capable of autonomous operation. 

 

5.2 Behavior-based robotics 

The concept of BBR was introduced in the mid 1980s, and was championed by 

Rodney Brooks1 and others. Nowadays, the behavior-based approach is used by 
researchers worldwide, and it is often strongly influenced by ethology (see Chapter 4). 

BBR approaches intelligence in a way that is very different from the classi- cal AI 
approach, as can be seen in Fig. 5.1. BBR, illustrated in the right panel of Fig. 5.1 is 
an alternative to classical AI, in which intelligent behavior is built from a set of basic 
behaviors. This set is known as the behavioral repertoire. Many behaviors may be 
running simultaneously in a given robotic brain, giv- ing suggestions concerning which 
actions the robot ought to take. An attempt should be made to define the concepts of 
behaviors and actions, since they are used somewhat differently by different authors. 
Here, a behavior will be de- fined simply as a sequence (possibly including feedback 
loops) of actions per- formed in order to achieve some goal. Thus, for example, an 
obstacle avoid- ance behavior may consist of the actions of stopping, turning, and 
starting to move again in a different direction. 

The construction of a robotic brain (in BBR) can be considered a two-stage 
process: First the individual behaviors must be generated. Next, a system for 
selecting which behavior(s) to use in any given situation must be constructed as well: 
In any robot intended for complex applications, the behavior selec- tion system is 
just as important as the individual behaviors themselves. Be- 

 

1See e.g. Brooks, R. A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics 

and Automation, RA–2, No. 1, pp. 14–23, 1986. 
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havior selection or, more generally, decision-making will be considered in a later 
chapter. 

The example of the moth above shows that intelligent behavior does not 
(always) require reasoning, and in BBR one generally uses a more generous 
definition of intelligent behavior than that implicity used in AI. Thus, in BBR, one may 
define intelligent behavior as the ability to survive, and to strive to reach other goals, 
in an unstructured environment. This definition is more in tune with the fact that most 
biological organisms are capable of highly intelligent be- havior in the environment 
where they normally live, even though they may fail quite badly in novel environments 
(as illustrated by the failure of, for example, a fly caught in front of a window). An 
unstructured environment changes rapidly and unexpectedly, so that it is impossible 
to rely completely on static maps: Even though such maps are highly relevant during, 
say, naviga- tion, they must also be complemented with appropriate behaviors for 
obstacle avoidance and other tasks. 

The BBR approach has been criticized for its inability to generate solutions to 
anything other than simple toy problems. In BBR, one commonly ties action directly to 
sensing; in other words, not much (cognitive) processing occurs. Furthermore, BBR 
is a rather loosely defined paradigm, in which many dif- ferent representations of 
behaviors and behavior selection systems have been developed. The absence of a 
clearly defined, universal representation of be- haviors and behavior selection makes 
it difficult, say, to combine (or compare) results obtained by different authors and to 
transfer a robotic brain (or a part thereof) from one robotic platform to another. 

For these (and other) reasons, the Adaptive systems research group at Chal- mers 
has, over the last few years, developed the General-purpose robotic brain structure 
(GPRBS), which is also implemented in GPRSim, with the specific aim of applying the 
strong sides of BBR (e.g. the connection to biological sys- tems, allowing the 
development of robust, survival-related behaviors) as well as the strong sides of 
classical AI (for implementing high-level cognitive pro- cesses). Furthermore, GRPBS 
implements a standardized method for decision- making. This structure will not be 
described further here, however. Instead, the topic of generating simple behaviors will 
be considered. 

 
5.3 Generating behaviors 

As indicated above, a robot intended for operation in the real world should first be 
equipped with the most fundamental of all behaviors, namely those that deal with 
survival. In animals, survival obviously takes precedence over any other activity: 
Whatever an animal is doing, it will suspend that activity if its life is threatened. What 
does survival involve in the case of a robot? In order to function, a robot must, of course, 
be structurally intact, and have a non-zero 
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energy level in its batteries. Thus, examples of survival-related behaviors are Collision 
avoidance and Homing (to find, say, a battery charging station). How- ever, even more 
important, particularly for large robots, is to avoid harming people. Thus, the purpose 
of collision avoidance is often to protect people in the surroundings of the robot, rather 
than protecting the robot itself. Indeed, one could imagine a situation where a robot 
would be required to sacrifice itself in defense of a human (this is what robots used 
by bomb squads do already today). These ideas have been summarized beautifully 
by the great science fiction author Isaac Asimov in his three laws of robotics, which 
are stated as follows 

First law: A robot may not injure a human being, or, through inaction, allow a 
human being to come to harm. 

Second law: A robot must obey orders given it by human beings, except 
where such orders would conflict with the first law. 

Third law: A robot must protect its own existence as long as such protec- tion 
does not conflict this the first or second law 

While Asimov’s laws certainly can serve as an inspiration for researchers work- ing on 
autonomous robots, a full implementation of those laws would be a daunting task, 
requiring reasoning and deliberation by the robot on a level way beyond the reach of 
the current state-of-the-art. However, in a basic sense, BBR and GPRBS clearly deal 
with behaviors related to Asimov’s laws. 

 
5.3.1 Basic motor behaviors in ARSim 

Writing reliable behaviors for autonomous robots is more difficult than it might seem at 
a first glance, particularly for robots operating in realistic (i.e. noisy and unpredictable) 
environments. In GPRBS, as has been mentioned before, robotic brains consist of 
several brain processes which together define the overall behavior of the robot. 
However, there is no well-defined method for deciding the exact composition of a brain 
process: For example, in some appli- cations, navigation and obstacle avoidance may 
be parts of the same (motor) behavior whereas, in other applications, navigation and 
obstacle avoidance may be separate behaviors, as illustrated beautifully by the 
phenomenologi- cal model for the chemotaxis of E. Coli in Chapter 4, an example that 
also il- lustrates an important principle, namely that of keeping individual behaviors 
simple, if possible. 

A common approach to writing behaviors is to implement them in the form of a 
sequence of IF-THEN-ELSE rules. Such a sequence can also be interpreted as a 
finite-state machine (FSM), i.e. a structure consisting of a finite number of states and 
(for each state) a set of transition conditions. In each state, the robot 
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can carry out some action (or a sequence of actions), for example setting its motor 
signals (left and right, for a differentially steered robot) to particular values. 

In ARSim, the program flow essentially follows the diagram shown in Fig. 3.1. 
Thus, in each time step of the simulation, (1) the robot probes the state of the 
enviroment using its sensors. With the updated sensor readings, the robot then (2) 
selects an action and (3) generates motor signals (one for each motor), which are then 
sent to the motors. Next, (4) the position and velocity are updated, as well as (5) the 
arena (if needed). Finally, (6) the termination criteria (for example, collisions) are 
considered. 

Note that, as mentioned in Chapter 3, for such a simulation to be realistic (i.e. 
implementable in a real robot), the time required, in a corresponding real robot, for 
the execution of steps (1) - (3) must be shorter than the simulation time step. By 
default, ARSim uses an updating frequency of 100 Hz (i.e. a time step of 0.01 s), which 
is attainable by the simple IR sensors used in the default setup. Furthermore, in the 
simple behaviors considered here, the deliberations in step (2) usually amount to 
checking a few if-then-else-clauses, a proce- dure that a modern processor 
completes within a few microseconds. 

The writing of basic behaviors for autonomous robots will be exemplified 

(1) in the form of a wandering behavior, which allows a robot to explore its 

surroundings, provided that no obstacles are present, and (2) using a simple 

navigation behavior which makes the robot move a given distance (in a straight line), 

using odometry. Other, more complex behaviors, will be considered in the home 

problems. 

 

5.3.2 Wandering 

The task of robot navigation, in a general sense, is a very complex one, since it 
normally requires that the robot should know its position at all times which, in turn, 
requires accurate positioning (or localization), a procedure which will be considered 
briefly in the next example. Simpler aspects of the motion of a robot can be considered 
without the need to introduce localization. For exam- ple wandering is an important 
behavior in, for instance, an exploration robot or a guard robot that is required to cover 
an area as efficiently as possible.   In order to implement a specific behavior in ARSim, 
one must modify the CreateBrain and BrainStep functions. For the wandering 
behavior, they take the shape shown in code listings 5.1 and 5.2. 

As can be seen in code listing 5.1, the CreateBrain function defines all the relevant 
variables and parameters of the robotic brain. The parameter values remain constant 
during the simulation, whereas the variables, of course, do not. Even though the 
variables are given values in CreateBrain, those val- ues are typically modified in 
the first state (initialization) of the behavior; see 



CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 212
 

212  

 
 

Code listing 5.1: The CreateBrain function for the wandering example. 

1 function b = CreateBrain; 

2 

3 %% Variables 

4 leftMotorSignal = 0; 

5 rightMotorSignal = 0; 

6 currentState = 0; 

7 

8 %% Parameters: 

9 forwardMotorSignal = 0.5; 

10 turnMotorSignal = 0.7; 

11 turnProbability = 0.01; 

12       stopTurnProbability = 0.03; 

13       leftTurnProbability = 0.50; 

14 

15 

16 b = struct(’LeftMotorSignal’,leftMotorSignal,... 
17 ’RightMotorSignal’,rightMotorSignal,... 
18 ’CurrentState’,currentState,... 
19 ’ForwardMotorSignal’,forwardMotorSignal,... 
20 ’TurnMotorSignal’,turnMotorSignal,... 
21 ’TurnProbability’,turnProbability,... 
22 ’StopTurnProbability’,stopTurnProbability,... 
23 ’LeftTurnProbability’,leftTurnProbability); 
 

 
code listing 5.2. Note the capitalization used when defining a Matlab struct. 
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Code listing 5.2: The BrainStep function for the wandering example. 

1 function b = BrainStep(robot, time); 

2 

3 b = robot.Brain; 

4 

5 %%%%%%%%%%%%%%%% FSM: %%%%%%%%%%%%%%%%%%%% 

6 if (b.CurrentState == 0) % Forward motion 

7 b.LeftMotorSignal = b.ForwardMotorSignal; 

8 b.RightMotorSignal = b.ForwardMotorSignal; 

9 b.CurrentState = 1; 

10 elseif (b.CurrentState == 1) % Time to turn? 

11 r = rand; 

12 if (r < b.TurnProbability) 

13 s = rand; 

14 if (s < b.LeftTurnProbability) 

15 b.LeftMotorSignal = b.TurnMotorSignal; 

16 b.RightMotorSignal = -b.TurnMotorSignal; 

17 else 

18 b.LeftMotorSignal = -b.TurnMotorSignal; 

19 b.RightMotorSignal = b.TurnMotorSignal; 

20 end 

21 b.CurrentState = 2; 

22 end 

23 elseif (b.CurrentState == 2) % Time to stop turning? 

24 r = rand; 

25 if (r < b.StopTurnProbability) 

26 b.CurrentState = 0; 

27 end 

28 end 

In this case, the BrainStep function is implemented as an FSM with three states. 
In the first state (State 0), the motor signals are set to equal values, making the robot 
move forward in an (almost) straight line, depending on the level of actuator noise. 
The FSM then jumps to State 1. In this state, the FSM checks whether it should begin 
turning. If yes, it decides (randomly) on a turning direction, and then jumps to State 2. 
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If no, the FSM will remain in State 
1. Note that the BrainStep function is executed 100 times per second (with the 
default time step of 0.01 s). In State 2, the FSM checks whether it should stop turning. 
If yes, it returns to State 0. 
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Code listing 5.3: The CreateBrain function for the navigation example. 

1 function b = CreateBrain; 

2 

3 %% Variables: 

4 

5 leftMotorSignal = 0; 

6 rightMotorSignal = 0; 

7 currentState = 0; 

8       initialPositionX = 0; % Arbitrary value here - set in state 0. 

9       initialPositionY = 0; % Arbitrary value here - set in state 0. 

10 

11 %% Parameters: 

12 desiredMovementDistance = 1; 

13 motorSignalConstant = 0.90; 

14 atDestinationThreshold = 0.02; 

15 

16 

17 b = struct(’LeftMotorSignal’,leftMotorSignal,... 
18 ’RightMotorSignal’,rightMotorSignal,... 
19 ’CurrentState’,currentState,... 
20 ’InitialPositionX’,initialPositionX,... 
21 ’InitialPositionY’,initialPositionY,... 
22 ’DesiredMovementDistance’,desiredMovementDistance,... 
23 ’MotorSignalConstant’,motorSignalConstant,... 
24 ’AtDestinationThreshold’,atDestinationThreshold); 
 

 

 

5.4 Navigation 

Purposeful navigation normally requires estimates of position and heading. In ARSim, 
the robot can be equipped with wheel encoders, from which odomet- ric estimates of 
position and heading can be obtained. Note that the odometer is calibrated upon 
initialization, i.e. the estimate is set equal to the true pose. However, when the robot 
is moving, the odometric estimate will soon devi- ate from the true pose. In ARSim, 
the odometric estimate (referred to as the odometric ghost) can be seen by setting 
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the variable ShowOdometricGhost to true. 

A simple example of navigation, in which a robot is required to move 1  m in its 
initial direction of heading, is given in code listings 5.3 and 5.4.  As  in the previous 
example, the variables and parameters are introduced in the CreateBrain function. 
The BrainStep function is again represented as an FSM. In State 0, the initial 
position and heading are stored and the FSM then jumps to State 1, in which the 
motor signal s (range [−1, 1]) is set as 

s = a 
D − d

, (5.1) 

D 
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where a is a constant, D is the desired movement distnace (in this case, 1 m) and d 
is the actual distance moved. 
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Code listing 5.4: The BrainStep function for the navigation example. 

1 function b = BrainStep(robot, time); 

2 

3 b = robot.Brain; 

4 

5 if (b.CurrentState ˜= 0) 
6 deltaX = robot.Odometer.EstimatedPosition(1) - b.InitialPositionX; 

7 deltaY = robot.Odometer.EstimatedPosition(2) - b.InitialPositionY; 

8 distanceTravelled = sqrt(deltaX*deltaX + deltaY*deltaY); 

9 end 

10 

11       %%%%%%%%%%%%%%% FSM: %%%%%%%%%%%%%%%%%%%% 

12       if (b.CurrentState == 0) % Initialization 

13 b.InitialPositionX = robot.Odometer.EstimatedPosition(1); 

14 b.InitialPositionY = robot.Odometer.EstimatedPosition(2); 

15 b.CurrentState = 1; 

16 elseif (b.CurrentState == 1) % Adaptive motion 

17 motorSignal = b.MotorSignalConstant*(b.DesiredMovementDistance-... 

18 distanceTravelled)/b.DesiredMovementDistance; 

19 b.LeftMotorSignal = motorSignal; 

20 b.RightMotorSignal = motorSignal; 

21 if (abs(b.DesiredMovementDistance - distanceTravelled) < ... 

22 b.AtDestinationThreshold*b.DesiredMovementDistance) 

23 b.CurrentState = 2; 

24 % ’At destination’ % Output for debugging 

25 end 

26 elseif (b.CurrentState == 2) % At destination 

27 b.LeftMotorSignal = 0; 

28 b.RightMotorSignal = 0; 

29 end 

The motor signal s is then applied to both wheels of the differentially steered robot. 
As can be seen, the motor signals will gradually drop from a to (almost) zero.  However, 
when  D  d  drops below bD, where b  1 is a constant, the  FSM jumps to State 2, in 
which the robot stops. 
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6. Discussion 

 

 

 

 

6 
Exploration, navigation, and localization 

 
In the previous chapter, the concept of robotic behaviors was introduced and 
exemplified by means of some basic motor behaviors. Albeit very simple, such 
behaviors can be tailored to solve a variety of tasks such as, for example, wan- dering, 
wall following and various forms of obstacle avoidance. However, there are also clear 
limitations. In this chapter, some more advanced motor behaviors will be studied. First, 
behaviors for exploration and navigation will be considered. Both of these two types 
of behavior require accurate pose esti- mates for the robot. It is assumed that the robot 
is equipped with a (cognitive) Odometry brain process, providing continuous pose 
(and velocity) estimates. As mentioned earlier, such estimates are subject to 
odometric drift, and there- fore an independent method for localization (i.e. odometric 
recalibration) is always required in realistic applications. Such a method will be 
studied in the final section of this chapter. However, exploration and navigation are im- 
portant problems in their own right and, in order to first concentrate on those problems, 
it will thus (unrealistically) be assumed,  in the first two sections  of the chapter, that 
the robot obtains perfect, noise-free pose estimates using odometry only. 

 

6.4 Exploration 

Purposeful navigation requires some form of map of the robot’s environment. In many 
cases, however, no map is available a priori. Instead, it is the robot’s task to acquire 
the map, in a process known as simultaneous localization and mapping (SLAM). 
In (autonomous) SLAM, a robot is released in an unknown arena, and it is then 
supposed to move in such a way that, during its motion, its long-range sensors 
(typically an LRF) covers every part of the arena, so that 
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the sensor readings can be used for generating a map. This is a rather diffi- cult task 
since, during exploration and mapping, the robot must keep track  of its position using, 
for odometric recalibration, the (incomplete, but grow- ing) map that it is currently 
generating. SLAM is an active research topic, for which many different methods have 
been suggested. A currently popular ap- proach is probabilistic robotics, in which 
the robot maintains a probability density function from which its position is inferred. 
However, SLAM is be- yond the scope of this text. Instead, the simpler, but still 
challenging, topic of exploration given perfect positioning (as mentioned in the 
introduction to this chapter) will be considered. 

Exploration can be carried out for different reasons. In some applications, such as 
lawn mowing, vacuum cleaning, clearing mine fields etc., the robot must physically 
cover as much as possible of the floor or ground in its envi- ronment. Thus, the robot 
must carry out area coverage. In some applications, 
e.g. vacuum cleaning, it is often sufficient that the robot carries out a more or less 
aimless wandering that, eventually, will make it cover the entire floor. In other 
applications, such as mapping, it is unnecessary for the robot to physi- cally visit every 
spot in the arena. Instead, what matters is that its long-range sensor, typically an LRF 
(or a camera), is able to sense every place in the arena at some point during the 
robot’s motion. The problem of exploring an arena such that the long-range sensor(s) 
reach all points in the arena will here be referred to as sensory area coverage. 

Exploring an arena, without any prior knowledge regarding its structure, is far from 
trivial. However, a motor behavior (in the GPRBS framework) for sensory area 

coverage has recently (2009) been implemented1. This Exploration behavior has been 
used both in the simulator GPRSim and in a real robot (as a part of SLAM). In both 
cases, the robot is assumed to be equipped with an LRF. The algorithm operates as 
follows: A node is placed at the current (esti- mated) position of the robot. Next, the 
robot generates a set of nodes at a given distance (D) from its current position 
(estimated using the Odometry process). Before any nodes are placed, the robot used 
the LRF (with an opening (sweep) angle α) to find feasible angular intervals for node 
placement, i.e. angular in- tervals in which the distance to the nearest obstacle 
exceeds D + ∆, where ∆ is a parameter measuring the margin between a node and 
the nearest obsta- cle behind the node. The exact details of the node placement 
procedure will not be given here. Suffice it to say that, in order to be feasible, an 
angular in- terval must have a width γ exceeding a  lower limit γmin  in order  for a  node 
to be placed (at the center of the angular interval). Furthermore, if the width of a 
feasible angular interval is sufficiently large, more than one node may be placed in 
the interval. An illustration of feasible angular intervals and node 

 

1See Wahde, M. and Sandberg, D. An algorithm for sensory area coverage by mobile robots oper- 

ating in complex arenas, Proc. of AMiRE 2009, pp. 179-186, 2009. 
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Figure 6.1: An illustration of the node placement method in the Exploration behavior. The 

left panel shows the distances obtained over the 180 degree opening angle of the LRF (note 

that individual rays are not shown). The inner semi-circle has a radius of D (the node 

placement distance) whereas the radius of the outer semi-circle is D + ∆. The right panel 

shows the re- sulting distribution of nodes. Note that one of the two feasible angular intervals 

is sufficiently wide to allow two nodes to be placed. 

 
placement is given in Fig. 6.1. 

At this point, the reader may ask why nodes are placed at a distance D 

from the current node, rather than as far away as possible (minus the margin 
∆). The reason is that, in practical use, one cannot (as is done here) assume that the 
odometry provides perfect pose estimates. Since the Exploration behavior is normally 
used in connection with SLAM, for which accurate positioning is crucial when building 
the map (a process involving alignment of consecutive laser scans), one cannot move 
a very large distance between consecutive laser snapshots. Thus, even though the 
typical range R of an LRF is around 4-10 m or more, the distance D is typically only 
around 1 m. 

An additional constraint on node placement regards the separation (con- cerning 
distances, not angles) between nodes. A minimum distance of d (typ- ically set to 0.75 
m or so) is enforced. The requirement that nodes should be separated by a distance 
of at least d makes the algorithm finite: At some point, it will no longer be possible to 
place new nodes without violating this con- straint. Thus, when all nodes have been 
processed (i.e. either having been vis- ited or deemed unreachable, see below), and 
no further nodes can be added, the exploration of the arena is complete. 

Returning to the algorithm, note that the initial node, from which the robot starts its 
exploration, is given the status completed (implying that this node has been reached) 
and is referred to as the active node. All newly generated nodes are given the status 
pending. The robot also generates paths to the pending 
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Figure 6.2: The early stages of a run using the exploration algorithm, showing a robot ex- 

ploring a single rectangular room without a door. The arena contains a single, low obstacle, 

which cannot be detected using the LRF (since it is mounted above the highest point of the 

obstacle). In each panel, the target node is shown with two thick circles, pending nodes are 

shown as a single thick circle, completed nodes as a filled disc, and unreachable nodes as a filled 

square. Upper left panel: The robot, whose size is indicated by a thin open circle, starts at 

node 1, generating three new pending nodes (2, 3, and 4). Upper right panel: Having reached 

node 4, the robot sets the status of that node to completed, and then generates new pending 

nodes. Lower left panel: Here, the robot has concluded (based on IR proximity readings) that 

node 6 is unreachable, and it therefore selects the nearest pending node (5, in this case) based 

on path distance, as the new target node. Lower right panel: Having reached node 5, due to 

the minimum distance requirement (between nodes) the robot can only generate one new 

node (7). It rotates to face that node, and then moves towards it etc. 

 

nodes. For example, if the robot is located at node 1 and generates three pend- ing 
nodes (2,3 and 4), the paths will be (1, 2), (1, 3) and (1, 4). The robot next selects the 
nearest node, based on the path length as the target node. In many cases (e.g. when 
more than one node can be placed), several nodes are at the same (estimated) 
distance from the robot. In such cases, the robot (arbitrarily) 

2 

3 

1 

4 

2 

5 
3 

6 

2 

3 

7 2 

3 



CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 224
 

224  

 

selects one of those nodes as the target node. For the paths just described, the path 
length equals the cartesian distance between the nodes. If a path con- tains more 
than two elements, however, the path length will differ from the cartesian distance, 
unless all the nodes in the path lie along a straight line. The path length is more 
relevant since, when executing the exploration algorithm described here, the robot 
will generally follow the path, even though direct movement between the active node 
and a target node is also possible under certain circumstances; see below. 

Next, the robot rotates to face the target node, and then proceeds towards it; see 
the upper left panel of Fig. 6.2. During the motion, one of two things can happen: 
Either (i) the robot reaches the target node or, (ii) using the output from a Proximity 
detection brain process (assumed available), it concludes that the target node cannot 
be reached along the current path. Note that, in order for the Proximity detection brain 
process to be useful, the sensors it uses should be mounted at a different (smaller) 
height compared to the LRF. 

In case (i), illustrated in the upper right panel of Fig. 6.2, once the target node has 
been reached, it is given the status completed and is then set as the new active node. 
At this point, the paths to the remaining pending nodes are updated. Continuing with 
the example above, if the robot moves to node 4, the paths to the other pending nodes 
(2 and 3) will be updated to (4, 1, 2) and (4, 1, 3). Furthermore, having reached node 
4, the robot generates new pend- ing nodes. Note that the robot need not be located 
exactly on node 4; instead, a node is considered to be reached when the robot passes 
within a distance a from it. The new nodes are added as described above. The 
minimum distance requirement between added nodes (see above) is also enforced. 
Proceeding with the example, the robot might, at this stage, add nodes 5 and 6, with 
the paths (4, 5) and (4 ,6). Again, the robot selects the nearest node based on the 
path length, rotates to face that node, and then starts moving towards it etc. Note that 
the robot can (and will) visit completed nodes more than once. How- ever, by the 
construction described above, only pending nodes can be target nodes. 

In case (ii), i.e. when the target node cannot be reached, the node is assigned the 
status unreachable, and the robot instead selects another target node and proceeds 
towards it, along the appropriate path. This situation is illustrated in the lower left panel 
of Fig. 6.2: Here, using its Proximity detection brain process, the robot concludes that 
it cannot reach node 6. It therefore marks this node unreachable, sets it as the active 
node, and then sets the nearest pending node as the new target, in this case node 5. 
One may wonder why case (ii) can oc- cur, since the robot uses the LRF before 
assigning new nodes. The reason, of course, is that the LRF (which is assumed to be 
two-dimensional) only scans the arena at a given height, thus effectively only 
considering a horizontal slice of the arena. A low obstacle may therefore be missed, 
until the robot comes sufficiently close to it, so that the Proximity detection brain 
process can detect it. 
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Figure 6.3: An illustration of a problem that might occur during exploration. Moving in one 

particular direction (left panel) the robot is able to place and follow the nodes shown. However, 

upon returning (right panel), the robot may conclude that it will be unable to pass the node 

near the corner, due to the proximity detection triggered as the robot approaches the node, 

with the wall right in front of it. 

 

Note that unreachable nodes are exempt from the minimum distance require- ment. 
This is so, since a given node may be unreachable from one direction but perhaps 
reachable from some other direction. Thus, the exploration algorithm is allowed to 
place new pending nodes arbitrarily close to unreachable nodes. 

One should note that robust exploration of any arena is more difficult than it might 
seem. An example of a problem that might occur is shown in Fig. 6.3. Here, the robot 
passes quite near a corner on its outbound journey (left panel), but no proximity 
detection is triggered. By contrast, upon returning (right panel) a proximity detection 
is triggered which, in turn, may force the robot to abandon its current path. In fact, the 
Exploration behavior contains a method (which will not be described here) for avoiding 
such deadlocks. In the (very rare) cases in which even the deadlock avoidance 
method fails, the robot sim- ply stops, and reports its failure. 

Because of the path following strategy described above, the robot may sometimes 
take an unnecessarily long path from the active node to the tar- get node. However, 
this does not happen so often since, in most cases, the robot will proceed directly to 
a newly added node, for which the path length is the same as the cartesian distance. 
However, when the robot cannot place any more nodes (something that occurs, for 
example, when it reaches a cor- ner), a distant node may become the target node. 
Therefore, in cases where the path to the target node differs from the direct path, the 
robot rotates to face the target node (provided that it is located within a distance L, 
where L should be smaller than or equal to the range R of the LRF). Next, if the robot 
concludes (based on its LRF readings) that it can reach the target node, it then 
proceeds directly towards it, rather than following the path. However, also in this case, 
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Figure 6.4: Left panel: The robot in its initial position in an unexplored arena. Right panel: 

The final result obtained after executing the Exploration behavior. The completed (visited) 

nodes are shown as green dots, whereas the (single) unreachable node is shown as a red dot. 

The final target node (the last node visited) is shown as a blue dot. In this case, the robot 

achieved better than 99.5% sensory area coverage of the arena. 

 
 

it is possible that a (low) obstacle prevents the robot from reaching its target, in which 
case the robot instead switches to following the path as described above. 

The robot continues this cycle of node placement and movement between nodes, 
until all nodes have been processed (i.e. either having been visited or deemed 
unreachable), at which point the exploration of the arena is complete. The Exploration 
behavior consists of an FSM with 17 states, which will not be 
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Figure 6.5: Three examples of grids that can be used in connection with grid-based naviga- 

tion methods. In the left panel, the nodes are not equidistant, unlike the middle panel which 

shows a regular lattice with equidistant nodes. The regular lattice can also be represented as 

grid cells, as shown in the right panel. Note that the right and middle panels show equivalent 

grids. 

 
described in detail here. A performance example is shown in Fig. 6.4.  The  left panel 
shows the robot at its starting point in a typical office arena. The right panel shows 
the final result, i.e. the path generated by the robot. The completed (visited) 
exploration nodes are shown as green dots, whereas the unreachable nodes (only 
one in this case) are shown as red dots. The final target node is shown as a blue dot. 
Note that the robot achieved a sensory area coverage (at the height of its LRF) of 
more than 99.5% during exploration. 

 
6.5 Navigation 

In this section, it will again be assumed that the robot has access to accurate 
estimates of its pose (from the Odometry brain process), and the question that will be 
considered is: Given that the robot knows its pose and velocity, how can it navigate 
between two arbitrary points in an arena? In the robotics liter- ature, many methods 
for navigation have been presented, three of which will be studied in detail in this 
section. 

 
6.5.1 Grid-based navigation methods 

In grid-based navigation methods, the robot’s environment must be covered with 
an (artificial) grid, consisting of nodes (vertices) and edges connecting the nodes. 
The grid may have any shape, as illustrated in the left panel of  Fig. 6.5, i.e. it need 
not be a rectangular lattice of the kind shown in the middle panel. However, if the grid 
happens to be a rectangular lattice, it is often rep- resented as shown in the right 
panel of the figure, where the nodes have been replaced by cells, and the edges are 

not shown2. Furthermore, the edges must be associated with a (non-negative) cost, 
which, in many cases is simply taken 

 

2Note that in the cell representation in the right panel, the sides of each cell are not edges: The 

edges connect the centers of the grid cells to each other, as shown in the middle panel. 
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Figure 6.6: Left panel: An example of automatic grid generation. The walls of the arena are 

shown as green thin lines. The black regions represent the forbidden parts of the arena, either 

unreachable locations or positions near walls and other obstacles. The grid cell boundaries 

are shown as thick yellow lines. Right panel: An example of a path between two points in  the 

arena. The basic path (connecting grid cells) was generated using Dijkstra’s algorithm (see 
below). The final path, shown in the figure, was adjusted to include changes of directions 

within grid cells, thus minimizing the length of the path. Note that all cells are convex, so that 

the path segments within a cell can safely be generated as straight lines between consecutive 

waypoints. 

 
 

as the euclidean distance between the nodes. Thus, for example, in the grids shown 
in the middle and right panels of Fig. 6.5, the cost of moving between adjacent nodes 
would be equal to 1 (length unit), whereas, in the grid shown in the left panel the cost 
would vary depending on which nodes are involved. 

An interesting issue is the generation of a navigation grid, given a two- 
dimensional map of an arena. This problem is far from trivial, especially in complex 
arenas with many walls and other objects. Furthermore, the grid gen- eration should 
take the robot’s size (with an additional margin) into account, in order to avoid 
situations where the robot must pass very close to a wall or some other object. The 
grid-based navigation methods described below gener- ate paths between grid cells. 
On a regular grid with small, quadratic cells (as in the examples below) it is sometimes 
sufficient to let the robot move on straight lines between the cell centers. However, the 
generated path may then become somewhat ragged. Furthermore, in more complex 
grids, where the cells are of different size, following a straight line between cell centers 
may result in an unnecessarily long path. Thus, in such cases, the robot must normally 
modify its heading within a cell, in order to find the shortest path. 

When generating a grid, one normally requires the grid cells to be convex, 
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1. Place the robot at the start node, which then becomes the current node. 

Assign the status unvisited to all nodes. 

2. Go through each of the cells ai that are (i) unvisited and (ii) directly reach- able 

(via an edge) from the current node c. Such nodes are referred to as neighbors 

of the current node. Compute the cost of going from ai to the target node t, 

using the heuristic f (ai). 

3. Select the node amin associated with the lowest cost, based on the cost values 

computed in Step 2. 

4. Set the status of the current node c as visited, and move to amin which then 

becomes the current node. 

5. Return to Step 2. 

 
Figure 6.7: The best-first search algorithm. 

 
so that all points on a straight line between any two points in the cell also are part of 
the cell. One way of doing so is to generate a grid consisting of trian- gular cells, which 
will all be convex. However, such grids may not be optimal: The pointiness of the grid 
cells may force the robot to make many unnecessary (and sharp) turns. An algorithm 
for constructing, from a map, a general grid consisting of convex cells with four or 

more sides (i.e. non-triangular) exists as well3. Fig. 6.6 shows an example of a grid 
generated with this algorithm. Because of its complexity, the algorithm will not be 
considered in detail here. Instead, in the examples below, we shall consider grids 
consisting of small quadratic cells, and we will neglect changes of direction within grid 
cells. 

 
Best-first search algorithm 

In best-first search (BFS) algorithm the robot moves greedily towards the tar- get, as 
described in Fig. 6.7. As can be seen, the BFS method chooses the next node based 
on the (estimated) cost of going from that node n to the goal, which is estimated using 
a heuristic function f (n). f (n) can be chosen in different ways, the simplest being to 
use the euclidean distance between the node un- der consideration and the target. 
However, in that case, the BFS method may, in fact, get stuck. A more sophisticated 
heuristic function may, for example, add a penalty for each obstacle encountered on 
a straight-line path from the node under consideration to the target node. 

The path can be generated by simply storing the list of visited nodes during 

3See Wahde, M., Sandberg, D., and Wolff, K. Reliable long-term navigation in indoor environ- 

ments, In: Topalov, A.V. (Ed.), Recent advances in Mobile Robots, InTech, 2011, pp. 261–286. 
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Figure 6.8: Two examples of paths generated using the BFS algorithm. The cells (nodes) that 

were checked during path generation are shown in light green, whereas the actual path is 

shown in dark green and with a solid line. The yellow cell is the start node and the white cell 

is the target node. 

 
path generation. The BFS method is very efficient in the absence of obstacles or when 
the obstacles are few, small, and far apart. An example of such a path generated with 
BFS is shown in the left panel of Fig. 6.8. As can be seen, the robot quickly moves 
from the start node to the target node.   However,    if there are extended obstacles 
between the robot’s current position and the target node, the BFS algorithm will not 
find the shortest path, as shown in the right panel of Fig. 6.8. Because of its greedy 
approach to the target, the robot will find itself in front of the obstacle, and must then 
make a rather long detour to arrive at the target node. 

 
Dijkstra’s algorithm 

Like BFS, Dijkstra’s algorithm also relies on a grid in which the edges are as- 
sociated with non-negative costs. Here, the cost will simply be taken as the euclidean 
distance between nodes. Instead of focusing on the (estimated) cost of going from a 
given node to the target note, Dijkstra’s algorithm considers the distance between the 
start node and the node under consideration, as de- scribed in Fig. 6.9. In Step 2, the 
distance from the start node s to any node ai is computed using the (known) distance 
from the initial node to the current node c and simply adding the distance between c and 
ai. This algorithm will check a large number of nodes, in an expanding pattern from the 
start node, as shown in Fig. 6.10. In order to determine the actual path to follow, 
whenever a new node a is checked, a note is made regarding the predecessor node 
p, i.e. the 
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7. Place the robot at the start node s, which then becomes the current node. 

Assign the distance value 0 to the start node, and infinity to all other nodes (in 

practice, use a very large, finite value). Set the status of all nodes to unvisited. 

8. Go through all the unvisited, accessible (i.e. empty) neighbors ai of the current 

node c, and compute their distance d from the start node s. If d is smaller than 

the previously stored distance di (initially infinite, see Step 1), then (i) update 

the stored distance, i.e. set di = d and (ii) assign the current node as the 

predecessor node of ai. 

9. After checking all the neighbors of the current node, set its status to vis- ited. 

10.Select the node (among all the unvisited, accessible nodes in the grid) with the 

smallest distance from the start node, and set it as the new cur- rent node. 

11.Return to Step 2, unless the target has been reached. 

12.When the target has been reached, use the predecessor nodes to trace a path 

from the target node to the start node. Finally, reverse the order of the nodes 

to find the path from the start node to the target node. 

 
Figure 6.9: Dijkstra’s algorithm. 

 
 

node that was the current node when checking node a. When the target has been 
found, the path connecting it to the initial node can be obtained by going through the 
predecessor nodes backwards, from the target node to the initial node. 

Unlike the BFS algorithm, Dijkstra’s algorithm is guaranteed to find the shortest 

path4 from the start node to the target node. However, a drawback with Dijkstra’s 
algorithm is that it typically searches many nodes that, in the end, turn out to be quite 
irrelevant. Looking at the search patterns in Figs. 6.8 and 6.10, one may hypothesize 
that a combination of the two algorithms would be useful. Indeed, there is an algorithm, 
known as A* that combines the BFS and Dijkstra algorithms. Like Dijkstra’s algorithm, 
A* is guaranteed to find the shortest path. Moreover, it does so more efficiently than 
Dijkstra’s algorithm. However, A* is beyond the scope of this text. 

 
 
 

4There may be more than one such path: Dijkstra’s algorithm will select one of them. 
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Figure 6.10: Two examples of paths generated using Dijkstra’s algorithm. The cells (nodes) 
that were checked during path generation are shown in light green, whereas the actual path 

is shown in dark green and with a solid line. The yellow cell is the start node and the white cell 

is the target node. 

 
6.5.2 Potential field navigation 

Unlike the algorithms described above, the potential field method does not require 
a grid. In the potential field method, a robot obtains its desired direc- tion of motion as 
the negative gradient of an artificial potential field, generated by potentials assigned to 
the navigation target and to objects in the arena. 

 
Potential fields 

As shown in Fig. 6.11, a potential field can be interpreted as a landscape with hills 
and valleys, and the motion of a robot can be compared to that of a ball rolling through 
this landscape. The navigation target is assigned a potential corresponding to a gentle 
downhill slope, whereas obstacles should generate potentials corresponding to steep 
hills. 

In principle, a variety of different equations could be used for defining dif- ferent 
kinds of potentials. An example, namely a potential with ellipsoidal equipotential 
surfaces, and exponential variation with (ellipsoidal) distance from the center of the 
potential, takes the mathematical form 

−( x−xp )
2

−( y−yp )
2

 

φ(x, y; xp, yp, α, β, γ) = αe β γ , (6.1) 

 

where (x, y) is the current (estimated) position at which the potential is calcu- lated, 
(xp, yp) is the position of the object generating the potential, and α, β and γ are constants 
(not to be confused with the constants defined in connection 
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Figure 6.11: A potential field containing a single obstacle and a navigation goal. 

 
with the equations of motion in Chapter 2 and the sensor equations in Chapter 3). Now, 
looking at the mathematical form of the potentials, one can see that an attractive 
potential (a valley) is formed if α is negative, whereas a positive value of α will generate 
a repulsive potential (a hill). 

Normally, the complete potential field contains many potentials of the form given in 
Eq. (6.1), so that the total potential becomes 

 

k 

Φ(x, y) = φi(x, y; xpi, ypi, αi, βi, γi), (6.2) 

i=1 

 

where k is the number of potentials. An example of a potential field, for a simple arena 
with four central pillars, is shown in Fig. 6.12. 

 
Navigating in a potential field 

Once the potential field has been defined, the desired direction of motion r̂ of the robot 
can be computed as the negative of the normalized gradient of the field 

r̂ = 
∇Φ 

 ∂Φ  ∂Φ 

  ∂x   ∂y  

 
 

(6.3) 

−
|∇Φ| 

≡ − .. 
∂Φ 

Σ2 
+ 

. 
∂Φ 

Σ2 

∂x ∂y 
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Figure 6.12: An illustration of potential field navigation in GPRSim. Upper left panel: A simple 

arena, with a robot following a potential field toward a target position in the upper left corner 

of the arena. Upper right panel: The corresponding potential field, generated by a total of 
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nine potentials (one for the target, one for each of the walls, and one for each pillar). Lower 

left panel: A contour plot of the potential field, in which the target position can be seen in the 

upper left corner. Lower right panel: The trajectory followed by the robot. Note that, in this 

simulation, the odometric readings were (unrealistically) noise-free. 
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In order to integrate the equations of motion of the robot, it is not sufficient only to 
know the desired direction: The magnitude of the force acting on the robot must also 
be known. In principle, the negative gradient of the potential field could be taken 
(without normalization) as the force acting on the robot, providing both magnitude and 
direction. However, in that case, the magni- tude of the force would vary quite strongly 
with the position of the robot, making the robot a dangerous moving object (if it is 
large). Thus, the poten- tial field is only used for providing the direction, as in Eq. (6.3). 
The robot’s speed v (i.e. the magnitude of its velocity vector v) can be assigned in 
various ways. For example, one may use proportional control to try to keep the speed 

constant5. 

An example of a trajectory generated during potential field navigation is shown in 
the lower right panel of Fig. 6.12. In the experiment in which this figure was generated, 
the noise in the odometric readings was (unrealistically) set to zero, since the aim here 
is simply to illustrate potential field navigation. However, in a realistic application, one 
would have to take into account the fact that the robot’s estimate of its pose will never 
be error-free. Thus, when setting up a potential field, it is prudent to make the 

potentials slightly larger6 than the physical objects that they represent. At the same 
time, in narrow corridors, one must be careful not to make the potentials (for walls on 
opposite sides of the corridor, say) so wide that the robot will be unable to pass. 

In fact, the definition of a potential field for a given arena is something of an art. In 
addition to the problem of determining the effective extension of the potentials, one 
also has to decide whether a given object should be repre- sented by one or several 
potentials (for instance of the form given in Eq. (6.1)). For example, an extended object 
(for example, a long wall) can be represented as a single potential (typically with very 
different values of the parameters β and γ), but it can also be represented as a 
sequence of potentials. In complex environments, one may resort to stochastic 
optimization of the potential field, as well as the details of the robot’s motion in the 

field7. 

 
Aspects of potential field navigation 

A gradient-following method, such as the potential field method, always suf- fers the 
risk of encountering local minima in the field. Of course, in potential 

 

5The procedure for assigning the robot’s speed in potential field navigation will be de- scribed 

below. 

6Of course, since the exponential potentials defined in Eq. (6.1) have infinite extension, 

the corresponding force never drops exactly to zero, but beyond a distance of a few d, where 

d = max(β, γ), the force is negligible. 

7For an example of such an approach, see Savage et al., Optimization of waypoint-guided potential 

field navigation using evolutionary algorithms, Proceedings of the 2004 IEEE/RSJ Inter- national 

Conference on Intelligent Robots and Systems (IROS 2004), 3463-3468, 2004. 

mailto:mattias.wahde@chalmers.se


CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 237

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se 

 

 

 
 
 
 
 
 
 
 
 

1 

0.5 

0 

-0.5 

-1 

-1.5 

0 

 

 

 

 

 

 

 
0.5 

 

 

 

 

 

 

 

 
1 

1.5 

 

 

 

 

 
 

0 

 

 
-0.5 

 
2 

 

 

 
0.5 

Figure 6.13: The locking phenomenon. Following the gradient of the potential field the robot, 

whose trajectory is shown as a sequence of black dots, moves along the x-axis toward the goal, 

located at (2, 0). However, because of the local minimum in the potential field, the robot 

eventually gets stuck. 

 

 
field navigation, the goal is to reach the local minimum represented by the navigation 
target. However, depending on the shape of the arena (and there- fore the potential 
field), there may also appear one or several unwanted local minima in the field, at 
which the robot may become trapped. 

This is called the locking phenomenon and it is illustrated in Fig. 6.13. Here, a 
robot encounters a wedge-shaped obstacle represented by three poten- tials. At a 
large distance from the obstacle, the robot will be directed toward the goal potential, 
which is located behind the obstacle as seen from the start- ing position of the robot. 
However, as the robot approaches the obstacles their repulsive potentials will begin to 
be noticeable. Attracted by the goal, the robot will thus eventually find itself stuck inside 
the wedge, at a local minimum of the potential. 

In order to avoid locking phenomena, the path between the robot and the goal can 
be supplied with waypoints, represented by attractive potentials (for example, of the 
form given in Eq. (6.1)) with rather small extension. Of course, the introduction of 
waypoints leads to the problem of determining where to 
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∆V 

 

put them. An analysis of such methods will not be given here8. Suffice it to say that 
the problem of waypoint placement can be solved in various ways to aid the robot in 
its navigation. A waypoint should be removed once the robot has passed within a 
distance L from it, to avoid situations in which the robot finds itself stuck at a waypoint. 

The potential field method also has several advantages, one of them being that 
the direction of motion is obtained simply by computing the gradient of the potential 
field at the current position, without the need to generate an en- tire path from the 
current position to the navigation target. Furthermore, the potential field is defined for 
all points in the arena. Thus, if the robot tem- porarily must suspend its navigation (for 
example, in order to avoid a moving obstacle), it can easily resume the navigation 
from wherever it happens to be located when the Obstacle avoidance behavior is 
deactivated. 

In the discussion above, only stationary obstacles were considered. Of course, 
moving obstacles can be included as well. In fact, the potential field method is 
commonly used in conjunction with, say, a grid-based navigation method, such that 
the latter generates the nominal path of the robot, whereas the potential field method 
is used for adjusting the path to avoid moving ob- stacles. However, methods for 
reliably detecting moving obstacles are beyond the scope of this text. 

 
Using the potential field method 

As mentioned above, the potential field only provides the current desired di- rection of 
motion. In order to specify a potential field navigation behavior com- pletely, one must 
also provide a method for setting the speed of the robot. This can be done as follows: 
Given the robot’s estimated (from odometry) angle of heading ϕest and the desired 
(reference) direction ϕref (obtained from the po- tential field), one can form the quantity 
∆ϕ as 

∆ϕ = ϕref − ϕest. (6.4) 

The desired speed differential ∆V (the difference between the right and left wheel 
speeds) can then be set according to 

∆V  = KpVnav∆ϕ, (6.5) 

where Kp is a regulatory constant (P-regulation is used) and Vnav is the (de- sired) speed 
of the robot during normal navigation. Once ∆V has been com- puted, reference 
speeds are sent to the (velocity-regulated) motors according to 

vL = Vnav − , (6.6) 

2 
 

 

8See, however, the paper by Savage et al. mentioned in Footnote 6. 
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− 

 

vR = Vnav + ∆V 
, (6.7) 

2 
where vR and vL are the reference speeds of the left and right wheels, respec- tively. 
Note that one can of course only set the desired (reference) speed values; the actual 
speed values obtained depend on the detailed dynamics of the robot and its motors. 

If the reference angle differs strongly from the estimated heading (which can 
happen, for example, in situations where the robot comes sufficiently close to an 
obstacle whose potential generates a steep hill), the robot may have to suspend its 
normal navigation and instead carry out a pure rotation, setting vL = Vrot, vR = Vrot for a 
left (counterclockwise) rotation, where Vrot is the ro- tation velocity, defined along with 

Vnav (and the other constants) during setup. In case the robot should carry out a 
clockwise rotation, the signs are reversed. The direction of rotation is, of course, 
determined by the sign of the differ- ence between the reference angle and the 
(estimated) heading. In this case, the robot should turn until the difference between the 
reference angle and the esti- mated heading drops below a user-specified threshold, 
at which point normal navigation can resume. 

 
6.6 Localization 

In Sects. 6.1 and 6.2, it was (unrealistically) assumed that the robot’s odome- try 
would provide perfect estimates of the pose. In reality, this will never be the case, and 
therefore the problem of recalibrating the odometric readings, from time to time, is a 
fundamental problem in robotics. Doing so requires a method for localization 
independent from odometry, and such methods usu- ally involve LRFs (even though 
cameras are also sometimes used), sensors that are difficult to simulate in ARSim 
(because of the large number of rays which would slow down the simulation 
considerably). Therefore, in this section, lo- calization will be described as it is 
implemented in the simulator GPRSim and in GPRBS, where LRFs are used. 

Robot localization requires two brain processes: The cognitive Odometry process 
and an independent process for odometric recalibration, which both in GPRSim and 
in GPRBS goes under the name Laser localization, since the behavior for odometric 
recalibration uses the readings of an LRF, together with a map, to infer its current 
location using scan matching, as described below. 

In fact, the problem of localization can be approached in many different ways. For 
outdoor applications, a robot may be equipped with GPS, which  in many cases will 
give sufficiently accurate position estimates. However, in indoor applications 
(standard) GPS cannot be used, since the signal is too weak to penetrate the walls of 
a building. Of course, it is possible to set up a local GPS system, for example by 
projecting IR beacons on the ceiling, using which 
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Figure 6.14: An illustration of the need for localization in mobile robot navigation. In the left 

panel, the robot navigates using odometry only. As a result, the odometric trajectory (red) 

deviates quite significantly from the actual (green) trajectory. In the right panel, Laser 

localization was activated periodically, leading to much improved odometric estimates. 

 
the robot can deduce its position by means of triangulation9. However, such a system 
requires that the arena should be adapted to the robot, something that might not 
always be desirable or even possible. 

The localization method (combining odometry and laser scan matching) that will 
be described here is normally used together with some navigation behavior. Thus, the 
robotic brain will consist of at least two motor behav- iors, in which case decision-
making also becomes important. This topic will be studied in a later chapter: For now, 
the Laser localization behavior will be considered separately. 

 
6.6.1 Laser localization 

The behavior is intended for localization in arenas for which a map has been provided 
to the robot (in the form of a sequence of lines). The map can ei- ther be obtained 
using a robot (executing a Mapping behavior) or, for example, from the floor plan of a 
building. The behavior relies on scans of the arena using a two-dimensional LRF and, 
like many methods for localization in auto- nomous robots, it assumes that all scans 
are carried out in a horizontal plane, thus limiting the behavior to planar (i.e. mostly 
indoor) environments. In fact, the name Laser localization is something of a misnomer: 
The behavior does not actually carry out (continuous) localization. Instead, when 
activated, the behavior takes as input the current pose estimate and tries to improve 
it.  If 

9This is the method used in the Northstar® system, developed by Evolution Robotics, inc. 
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Figure 6.15: An enlargement of the most significant correction in odometric readings (in the 

right panel of Fig. 6.14) resulting from the Laser localization behavior. 

 
successful, the odometric pose is reset to the position suggested by the Laser 
localization behavior. 

The left panel of Fig. 6.14 illustrates the need for localization: The nav- igation 
task shown in Fig. 6.12 was considered again (with the same start-  ing point, but a 
different initial direction of motion), this time with realistic (i.e. non-zero) levels of noise 
in the wheel encoders and, therefore, also in the odometry. As can be seen in the 
figure, the odometric drift causes a rather large discrepancy between the actual 
trajectory (green) and the odometric es- timate (red). In the right panel, the robotic 
brain contained two behaviors (in addition to the cognitive Odometry process), namely 
Potential field navigation and Laser localization. The Laser localization behavior was 
activated periodically (thus deactivating the Potential field navigation behavior), each 
time recalibrat- ing (if necessary) the odometric readings.  As can be seen in the right 
panel  of Fig. 6.14, with laser localization in place, the discrepancy between the odo- 
metric and actual trajectories is reduced significantly. At one point, the Laser 
localization behavior was required to make a rather large correction of the odo- metric 
readings. That particular event is shown enlarged in Fig. 6.15. As can be seen, the 
odometric readings undergo a discrete step at the moment of lo- calization. 

When activated, the localization behavior10  considered here first stops the 
 

10See Sandberg,  D.,  Wolff,  K.,  and Wahde, M. A robot localization method based on laser scan 
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Figure 6.16: Two examples of scan matching. The leftmost panel in each row shows a few 

rays (solid lines) from an actual LRF reading (plotted in the map used by the virtual LRF), and 

the middle panels show the virtual LRF readings (dotted lines) in a case in which the estimated 

pose differs quite strongly from the correct one (upper row), and one in which the difference 

is small (bottom row). The direction of heading is illustrated with arrows. The right panel in 

each row shows both the actual LRF rays and the virtual ones. The figure also illustrates the 

map, which consists of a sequence of lines. 

 
robot, and then takes a reading of the LRF. Next, it tries to match this reading to a 
virtual reading taken by placing a virtual LRF (hereafter: vLRF) at various positions in 
the map. Two examples of scan matching are shown in Fig. 6.16. The three panels in 
the upper row show a situation in which the odometry has drifted significantly. The 
upper left panel shows the readings (i.e. laser ray distances) from an actual LRF 
mounted on top of the robot (not shown). Note that, for clarity, the figure only shows 
a few of the many (typically hundreds) laser ray directions. The upper middle panel 
shows the readings of the vLRF, placed at the initial position and heading obtained 
from odometry. As can be seen in the upper right panel, the two scans match rather 
badly. By contrast, the three panels of the bottom row show a situation in which the 
pose error is small. The purpose of the search algorithm described below is to be able 
to correct the odometry, i.e. to reach a situation similar to the one shown in the bottom 
row of Fig. 6.16. Fig. 6.17 shows another example of a good (left panel) and a bad 
(right panel) scan match. In the case shown in the left panel, the 

matching, Proc. of AMiRE 2009, pp. 171-178, 2009. 
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Figure 6.17: Matching of LRF rays (in a different arena than the one used in the examples 

above). The readings of the actual LRF are shown in green, and those of the virtual LRF are 

shown in red. Left panel: An almost exact match. Right panel: In this case, the odometry has 

drifted enough to cause a large discrepancy between the actual and virtual LRF rays. 

 
odometric pose estimate is quite good, so that the rays from the actual LRF (green) 
match those of the vLRF quite well, at the current pose estimate. By constrast, in the 
situation shown in the right panel, the odometry has drifted significantly. 

 
Scan matching algorithm 

Let p = (x, y, ϕ) denote a pose (in the map) of the vLRF. The distances between the 

vLRF and an obstacle, along ray i, are obtained using the map11 and are de- noted δi. 
Similarly, the distances obtained for the real LRF (at its current pose, which normally 
differs from p when the localization behavior is activated) are denoted di. 

The matching error s between two scans can be defined in various ways. For rays 
that do not intersect an obstacle, the corresponding reading (di or δi) is (arbitrarily) set 
to -1. Such rays should be excluded when computing the error. Thus, the matching 
error is taken as ‚

. 1 Σn 
.

 δ 
Σ2 

 
 

s = , ν χi 
i=1 1 − 

d
 

, (6.8) 

where n is the number of LRF rays used12. The parameter χi is equal to one 
 

11In practice, the ray reading δi of the vLRF is obtained by checking for intersection between the lines 

in the map and a line of length R (the range of the LRF) pointing in the direction of the ray, and then 

choosing the shortest distance thus obtained (corresponding to the nearest obstacle along the ray). If 

no intersection is found, the corresponding reading is set to -1. 

12For example, in the case of a Hokuyo URG-04LX LRF, a maximum of 682 rays are available. 

i 

i 
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for those indices i for which both the real LRF and the vLRF detect an obstacle (i.e. 
obtain a reading different from -1) whereas χi is equal to zero for indices i such that 
either the real LRF or the vLRF (or both) do not detect any obstacle (out to the range 
R of the LRF). ν denotes the number of rays actually used in forming the error 
measure, i.e. the number of rays for which χi is equal to one. As can be seen, s is a 
measure of the (normalized) average relative deviation in detected distances 
between the real LRF and the vLRF. 

Since di are given and δi  depend on the pose of the vLRF,  one may write  s = s(p). 
Now, if the odometric pose estimate happens to be exact, the virtual and actual LRF 
scans will be (almost) identical (depending on the accuracy of the map and the noise 
level in the real LRF), resulting in a very small matching error, in which case the 
localization behavior can be deactivated and the robot may continue its navigation. 
However, if the error exceeds a user-defined threshold T , the robot can conclude that 
its odometric estimates are not suf- ficiently accurate, and it must therefore try to 
minimize the matching error by trying various poses in the map, i.e. by carrying out a 
number of virtual scans, in order to determine the actual pose of the robot. The scan 
matching problem can thus be formulated as the optimization problem of finding the 
pose p = pv that minimizes s = s(p). Once this pose has been found, the new 
odometric pose p

new
 is set equal to pv. 

Note that it is assumed that the robot is standing still during localization. 
This restriction (which, in principle, can be removed) is introduced in order to (i) avoid 
having to correct for the motion occuring during the laser sweep, which typically lasts 
between 0.01 and 0.1 s and (ii) avoid having to correct for the motion that would 
otherwise take place during scan matching procedure, which normally takes a (non-
negligible) fraction of a second. Thus, only one scan needs to be carried out using the 
real LRF mounted on the robot. The re- maining work consists of generating virtual 
scans in the map, at a sequence of poses, and to match these to the actual LRF 
readings. Unlike some other scan matching methods, the method used here does not 
attempt to fit lines to the LRF readings. Instead, the LRF rays (actual and virtual, as 
described above) are used directly during scan matching. The sequence of poses for 
the vLRF is generated as follows: First the actual LRF scan is carried out, generating 
the distances di. Next, a virtual scan is carried out (in the map) at the current estimated 
position p0. If the error s0 = s(p0) is below the threshold T , local- ization is complete. If 
not, the algorithm picks a random pose pj (where j = 1 in the first iteration) in a 
rectangular box of size Lx    Ly     Lϕ, centered on p0  in pose space, and computes the 
matching error sj = s(pj). The constants Lx and Ly are typically set to around 0.1 m 
and the constant Lϕ is set to around 

0.1 radians. 
The process is repeated until, for some j = j1, an error sj1 

< s0 is found. At this point, 
the rectangular box is re-centered to pj1 

, and the search continues, now picking a 
random pose in the rectangular box centered on pj1 

. Once a po- 
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Figure 6.18: An illustration of the sequence of 

poses generated during two executions of the 

search algorithm (with arrows indicating the 

direction of heading). In each panel, the actual 

position (measured in meters) of the robot is 

indicated with a filled square. The initial 

estimated position (i.e. from odometry, before 

correction) is shown as a filled disc, and the 

final estimated position is visualized as an open 

square. The intermediate points generated 

during the search are represented as open discs 

and are shown together with the corresponding 

iteration number. Note that, for clarity, only 

some of the intermediate points are shown. 

 
sition pj2 

is found for which sj2 
< sj1 

, the 
rectangular box is again re-centered etc. 
The procedure is repeated for a given 
number (N ) of iterations13. 

Even though the algorithm is designed 
to improve both the position and the 
heading simultaneously, in practice, the 
result of running the algorithm is usually to 
correct the heading first (which is easiest, 
since an error in heading typically has a 
larger effect on the scan match than a 
position error), as can be seen clearly in 
the right panel of Fig. 6.18. At this stage, 
the estimated pose can make a rather 
large excursion in position space. 
However, once a fairly correct heading has 
been found, the estimated position 
normally converges quite rapidly to the 
correct position. 
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http://queue.IEOR.Berkeley.EDU/~goldberg/art/telerobotics-links.html 

http://www.cs.uni-bonn.de/~rhino/ 

http://www.cs.cmu.edu/~minerva/ 

http://telerobot.mech.uwa.edu.au 

http://www.ieor.berkeley.edu/~goldberg/GC/www.html 

http://pumapaint.rwu.edu/ http://mars.graham.com/wits/ 

http://www.cs.cmu.edu/~illah/SAGE/index.html 

http://www.dislocation.net/ 

http://rr-vs.informatik.uni-ulm.de/rr/ 

http://www.eventscope.org/Eventscope/main.htm 
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http://www.ri.cmu.edu/project_lists/index.html
http://www.roboticsclub.org/links.html
http://www.activrobots.com/
http://asl.epfl.ch/
http://robotics.epfl.ch/
http://robotics.epfl.ch/
http://www.cs.cmu.edu/~illah/EDUTOY
http://www.cs.cmu.edu/~mercator/
http://www.laas.fr/RIA/RIA.html
http://www.cs.cmu.edu/~illah/lab.html
http://www.cs.umd.edu/projects/amrl/amrl.html
http://www.cc.gatech.edu/ai/robot-lab/
http://www.engin.umich.edu/research/mrl/index.html
http://www.uwe.ac.uk/clawar/
http://www.fzi.de/divisions/ipt/
http://www.automation.hut.fi/
http://www.ai.mit.edu/projects/leglab/
http://asl.epfl.ch/
http://www.cs.cmu.edu/~personalrover/
http://telerobot.mech.uwa.edu.au/secn/links.html
http://queue.ieor.berkeley.edu/~goldberg/art/telerobotics-links.html
http://www.cs.uni-bonn.de/~rhino/
http://www.cs.cmu.edu/~minerva/
http://telerobot.mech.uwa.edu.au/
http://www.ieor.berkeley.edu/~goldberg/GC/www.html
http://pumapaint.rwu.edu/
http://mars.graham.com/wits/
http://www.cs.cmu.edu/~illah/SAGE/index.html
http://www.dislocation.net/
http://rr-vs.informatik.uni-ulm.de/rr/
http://www.eventscope.org/Eventscope/main.htm
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The following is an alphabetical list of all the Matlab functions associated with ARSim. 
For each function, the library to which the function belongs is given, along with the 
interface of the function and a brief description. For further information, see the actual 
source code for the function in question. 

AddMotionResults Library: 

ResultFunctions 

Interface: 

motionresults = AddMotionResults(oldMotionResults, time, robot) 

Description: This function updates the motion results by adding the current position, velocity, 
heading, and sensor readings of the robot. 

BrainStep Library: 

– 

Interface: b = BrainStep(robot, time); 

Description: The BrainStep implements the decision-making system (i.e. the brain) 
of the robot. The detailed form of this function will vary from ex- periment to 
experiment. 

CalibrateOdometer 

Library: RobotFunctions 

Interface: o = CalibrateOdometer(robot) 

Description: In simulations in which an odometer is used, a call to CalibrateOdometer is 
made just before the start of the simulation, in order to set the correct posi- 

tion and heading of the robot. 

See also: CreateOdometer 
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CheckForCollisions 

Library: RobotFunctions 

Interface: coll = CheckForCollisions(arena, robot); Description: This 
function carries out a collision check, by running through all arena objects (polygons) line 
by line, and checking for intersections between the current line and the spherical body 
of the robot. 

 
CreateArena 

Library: ArenaFunctions 

Interface: arena = CreateArena(name,size,objectArray) Description: 

This function generates an arena, given an array of arena objects. See also: 
CreateArenaObject 

CreateArenaObject Library: 

ArenaFunctions 

Interface: arenaobject = CreateArenaObject(name,vertexArray) 
Description: This function generates an arena object, given an array of coor- dinates 
for vertices. 
 

CreateBrain 

Library: – 

Interface: b = CreateBrain; 

Description: This function generates the brain of a robot. Its exact form will vary from 
experiment to experiment. 
 

CreateCompass Library: 

RobotFunctions 

Interface: c = CreateCompass(name,sigma); 

Description: This function generates a compass which can be used for esti- mating the 
heading of the robot. The parameter sigma determines the noise level. 
 

CreateIRSensor Library: 

RobotFunctions 

Interface: s = CreateIRSensor(name,relativeAngle,size,numberOfRays, 
openingAngle,range,c1,c2,sigma); 



Appendix A: Matlab functions in ARSim 266 
 

266  

 

Description: CreateIRSensor creates an IR sensor that uses the ray trac- ing 
procedure described above to obtain its readings. The parameter sigma is defined as 
in Eq. (3.1). 

 
CreateMotor 

Library: RobotFunctions 

Interface: m = CreateMotor(name); 

Description: CreateMotor generates a DC motor, using settings suitable for a 
robot with a mass of a few kg. 
 

CreateOdometer Library: 

RobotFunctions 

Interface: o = CreateOdometer(name, sigma); 

Description: This function generates an odometer, which, in turn, provides estimates 
for the position and heading of the robot. The parameter sigma determines the noise 
level. 

 
CreateRobot 

Library: RobotFunctions 

Interface: robot = CreateRobot(name,mass,momentOfInertia,radius, 
wheelRadius,rayBasedSensorArray, motorArray,compass,odometer,brain) 

Description: CreateRobot sets up a robot, and computes the dynamical pa- 

rameters typical of a robot with a mass of a few kg. 
 

GetCompassReading 

Library: RobotFunctions 

Interface: c = GetCompassReading(robot, dt); 

Description: This function updates the compass readings of a robot. 
 

GetDistanceToLineAlongRay Library: 

RobotFunctions 

Interface: l = GetDistanceToLineAlongRay(beta,p1,p2,x1,y1); 
Description: This function, which is used by the IR sensors, computes the distance 
from a given point (x1, y1) to a line segment. 
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See also: GetIRSensorReading, GetDistanceToNearestObject. 
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GetDistanceToNearestObject 

Library: RobotFunctions 

Interface: d = GetDistanceToNearestObject(beta, x, y, arena); 

Description: This function, which is used by the IR sensors, determines the distance 
between an IR sensor and the nearest object along a given ray. 

See also: GetIRSensorReading. 

GetIRSensorReading Library: 

RobotFunctions 

Interface: s = GetIRSensorReading(sensor,arena); 

Description: GetIRSensorReading determines the reading of an IR sensor. 

 
GetMinMaxAngle Library: 

RobotFunctions 

Interface: [aMin,aMax] = GetMinMaxAngle(v1,v2); 

Description: This function determines the direction angles of the vectors con- necting 
the origin of the coordinate system to the tips of a line segment. 

See also: GetDistanceToNearestObject. 

GetMotorSignalsFromBrain Library: 

RobotFunctions 

Interface: s = GetMotorSignalsFromBrain(brain); 

Description: This function extracts the motor signals (one for each motor) from the 
brain of the robot. 

See also: MoveRobot. 

GetOdometerReading 

Library: RobotFunctions 

Interface: o = GetOdometerReading(robot, dt); 

Description: This function updates the odometer readings of a robot. 

GetRayBasedSensorReadings Library: 

RobotFunctions 
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Interface: s = GetRayBasedSensorReadings(robot, arena) Description: 

This function obtains the reading of all (IR) sensors of the robot. See also: 
GetIRSensorReading. 
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GetTorque 

Library: RobotFunctions 

Interface: m = GetTorque(motor, voltage); 

Description: This function determines the torque delivered by a DC motor, given a 
value of the applied voltage. 

InitializeMotionResults 

Library: ResultFunctions 

Interface: motionResults = InitializeMotionResults(robot) 
Description: This function initializes a Matlab structure used for storing the results 
of the simulation, i.e. the position, velocity, heading, and sensor read- ings of the 
robot. 

 
InitPlot 

Library: PlotFunctions 

Interface: plotHandle = InitializePlot(robot, arena) 

Description: This function generates the plot of the robot and the arena. See 

also: CreateArena, CreateRobot. 

 
MoveRobot 

Library: RobotFunctions 

Interface: r = MoveRobot(robot,dt); 

Description: MoveRobot moves the robot according to the equations of mo- tion 
for a differentially steered two-wheeled robot. 

ScaleMotorSignals 

Library: 

RobotFunctions 

Interface: v = ScaleMotorSignals(robot,s); 

Description: This function scales the motor signals (s) to the appropriate range, 
as set by the voltage requirements of the robot’s DC motors. 

SetPositionAndVelocity 

Library: 
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RobotFunctions 

Interface: r = SetPosition(robot,position,heading, 

velocity,angularSpeed); 

Description: This function places the robot at a given location, and also sets is 
direction of motion, velocity, and angular velocity. 
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73.  

ShowRobot 

Library: PlotFunctions 

Interface: ShowRobot(plot,robot) 

Description: ShowRobot updates the plot of the robot using 
Matlab’s handle graphics: Each part of the plot of the robot can be 
accessed and its position can be be updated. ShowRobot also 
supports the plotting of an odometric ghost, 

i.e. a plot showing the robot at the location determined by its odometer. 

See also: MoveRobot. 

UpdateMotorAxisAng

ularSpeed Library: 

RobotFunctions 

Interface: r = UpdateMotorAxisAngularSpeed(robot) 

Description: This function determines the angular speed of each 
motor axis, using the wheel speed and wheel radius. 

UpdateSe

nsorPositi

ons 

Library: 

RobotFun

ctions 

Interface: s = UpdateSensorPositions(robot); 

Description: This function updates the positions (and directions) of the 
sen- sors as the robot is moved. 

 


