University of Oxford

College of Computer Science

Elzein Salah Elzein

22/12/2021

N n B wbheE

Contents (Section)
Introduction
Literature Review
Research Overview
Related Work
Discussion
References
Appendices

Page

16
74
146
220
247
263

PHD Report Draft

Written By Elzein Salah Elzein

Robotics and Autonomous Systems

1. Introduction

1 Locomotion

1.1 Introduction

A mobile robot needs locomotion mechanisms that enable it to move
unbounded through- out its environment. But there are a large variety of
possible ways to move, and so the selec- tion of a robot’s approach to
locomotion is an important aspect of mobile robot design. In the
laboratory, there are research robots that can walk, jump, run, slide,
skate, swim, fly, and, of course, roll. Most of these locomotion
mechanisms have been inspired by their bio- logical counterparts (see
figure 2.1).

There is, however, one exception: the actively powered wheel is a
human invention that achieves extremely high efficiency on flat ground.
This mechanism is not completely for- eign to biological systems. Our
bipedal walking system can be approximated by a rolling polygon, with
sides equal in length dto the span of the step (figure 2.2). As the step
size decreases, the polygon approaches a circle or wheel. But nature
did not develop a fully rotating, actively powered joint, which is the
technology necessary for wheeled locomo- tion.

Biological systems succeed in moving through a wide variety of
harsh environments. Therefore it can be desirable to copy their
selection of locomotion mechanisms. However, replicating nature in
this regard is extremely difficult for several reasons. To begin with,

4

mechanical complexity is easily achieved in biological systems through
structural replica- tion. Cell division, in combination with specialization,
can readily produce a millipede with several hundred legs and several
tens of thousands of individually sensed cilia. In man- made
structures, each part must be fabricated individually, and so no such
economies of scale exist. Additionally, the cell is a microscopic building
block that enables extreme min- iaturization. With very small size and
weight, insects achieve a level of robustness that we have not been
able to match with human fabrication techniques. Finally, the
biological energy storage system and the muscular and hydraulic
activation systems used by large ani- mals and insects achieve torque,
response time, and conversion efficiencies that far exceed similarly
scaled man-made systems.

Locomotion 14

Type of motion Resistance to motion| Basic kinematics of motion
i
Flow in Q%Q
a Channel Hydrodynamic forces| Eddies
(eRg aee
Crawl Friction forces Longitudinal vibration
7 I'I" =
Slidin i v -
laing - Friction forces Transverse vibration
——— ey Oscillator
L y
e —— '='_'=‘-|n|.___
movemen
Running Loss of kinetic t
energy of a multi-link
pendulum
-F‘_J
A Oscillatory
L movemen
| ‘ / # t
umping &P i of amulti-link
Loss of kinetic pendulum
energy
E
I
. A Rolling of a @
Walking 4 polygon /
Gravitational forces | (see figure 2.2)
Figure 2.1

Locomotion mechanisms used in biological systems.

Owing to these limitations, mobile robots generally locomote either
using wheeled mechanisms, a well-known human technology for
vehicles, or using a small number of articulated legs, the simplest of
the biological approaches to locomotion (see figure 2.2).

In general, legged locomotion requires higher degrees of freedom
and therefore greater mechanical complexity than wheeled
locomotion. Wheels, in addition to being simple, are extremely well

14

Locomotion 15
suited to flat ground. As figure 2.3 depicts, on flat surfaces wheeled

loco- motion is one to two orders of magnitude more efficient than
legged locomotion. The rail- way is ideally engineered for wheeled
locomotion because rolling friction is minimized on a hard and flat steel
surface. But as the surface becomes soft, wheeled locomotion accumu-
lates inefficiencies due to rolling friction whereas legged locomotion
suffers much less because it consists only of point contacts with the

ground. This is demonstrated in figure
2.3 by the dramatic loss of efficiency in the case of a tire on soft ground.

15

Locomotion

2. Literature Review

16

16

Locomotion 17

Figure 2.2

A biped walking system can be approximated by a rolling polygon, with sides equal in length dto the
span of the step. As the step size decreases, the polygon approaches a circle or wheel with the radius
l.

100

10

unit power

0.1

17

Locomotion
1 10 100

speed (miles/hour)

Figure 2.3

Specific power versus attainable speed of various locomotion mechanisms [33].

18

18

Locomotion 19

Figure 2.4

RoboTrac, a hybrid wheel-leg vehicle for rough terrain [130].

In effect, the efficiency of wheeled locomotion depends greatly on
environmental qual- ities, particularly the flatness and hardness of the
ground, while the efficiency of legged locomotion depends on the leg
mass and body mass, both of which the robot must support at various
points in a legged gait.

It is understandable therefore that nature favors legged locomotion,
since locomotion systems in nature must operate on rough and
unstructured terrain. For example, in the case of insects in a forest the
vertical variation in ground height is often an order of magnitude
greater than the total height of the insect. By the same token, the
human environment fre- quently consists of engineered, smooth
surfaces, both indoors and outdoors. Therefore, it is also
understandable that virtually all industrial applications of mobile
robotics utilize some form of wheeled locomotion. Recently, for more
natural outdoor environments, there has been some progress toward
hybrid and legged industrial robots such as the forestry robot shown
in figure 2.4.

In the section 2.1.1, we present general considerations that concern

19

Locomotion 20
all forms of mobile robot locomotion. Following this, in sections 2.2 and

2.3, we present overviews of legged locomotion and wheeled
locomotion techniques for mobile robots.

1.1.1 Key issues for locomotion

Locomotion is the complement of manipulation. In manipulation, the
robot arm is fixed but moves objects in the workspace by imparting
force to them. In locomotion, the environ- ment is fixed and the robot
moves by imparting force to the environment. In both cases, the
scientific basis is the study of actuators that generate interaction
forces, and mechanisms

20

Locomotion 21

that implement desired kinematic and dynamic properties.
Locomotion and manipulation thus share the same core issues of
stability, contact characteristics, and environmental type:
* stability

- number and geometry of contact points

- center of gravity

- static/dynamic stability

- inclination of terrain

* characteristics of contact
- contact point/path size and shape
- angle of contact
- friction

* type of environment
- structure
- medium, (e.g. water, air, soft or hard ground)

A theoretical analysis of locomotion begins with mechanics and
physics. From this start- ing point, we can formally define and analyze
all manner of mobile robot locomotion sys- tems. However, this book
focuses on the mobile robot navigation problem, particularly stressing
perception, localization, and cognition. Thus we will not delve deeply
into the physical basis of locomotion. Nevertheless, the two remaining
sections in this chapter present overviews of issues in legged
locomotion [33] and wheeled locomotion. Then, chapter 3 presents a
more detailed analysis of the kinematics and control of wheeled mobile
robots.

12 Legged Mobile Robots

Legged locomotion is characterized by a series of point contacts
between the robot and the ground. The key advantages include
adaptability and maneuverability in rough terrain. Because only a set
of point contacts is required, the quality of the ground between those
points does not matter so long as the robot can maintain adequate
ground clearance. In addi- tion, a walking robot is capable of crossing a
hole or chasm so long as its reach exceeds the width of the hole. A final

21

Locomotion 22
advantage of legged locomotion is the potential to manipulate objects

in the environment with great skill. An excellent insect example, the
dung beetle, is capable of rolling a ball while locomoting by way of its
dexterous front legs.

The main disadvantages of legged locomotion include power and
mechanical complex- ity. The leg, which may include several degrees
of freedom, must be capable of sustaining part of the robot’s total
weight, and in many robots must be capable of lifting and lowering the
robot. Additionally, high maneuverability will only be achieved if the
legs have a suf- ficient number of degrees of freedom to impart forces
in a number of different directions.

22

Locomotion 23

mammals reptiles insects
two or four four legs six legs
legs
Figure 2.5

Arrangement of the legs of various animals.

1.2.1 Leg configurations and stability

Because legged robots are biologically inspired, it is instructive to
examine biologically successful legged systems. A number of different
leg configurations have been successful in a variety of organisms
(figure 2.5). Large animals, such as mammals and reptiles, have four
legs, whereas insects have six or more legs. In some mammals, the
ability to walk on only two legs has been perfected. Especially in the

case of humans, balance has progressed

to the point that we can even jump with one leg’. This exceptional
maneuverability comes

at a price: much more complex active control to maintain balance.

In contrast, a creature with three legs can exhibit a static, stable pose
provided that it can ensure that its center of gravity is within the tripod
of ground contact. Static stability, dem- onstrated by a three-legged
stool, means that balance is maintained with no need for motion. A
small deviation from stability (e.g., gently pushing the stool) is
passively cor- rected toward the stable pose when the upsetting force
stops.

But a robot must be able to lift its legs in order to walk. In order to
achieve static walk- ing, a robot must have at least six legs. In such a
configuration, it is possible to design a gait in which a statically stable
tripod of legs is in contact with the ground at all times (figure 2.8).

23

Locomotion 24
Insects and spiders are immediately able to walk when born. For

them, the problem of balance during walking is relatively simple.
Mammals, with four legs, cannot achieve static walking, but are able to
stand easily on four legs. Fauns, for example, spend several minutes
attempting to stand before they are able to do so, then spend several
more minutes learning to walk without falling. Humans, with two legs,
cannot even stand in one place with static stability. Infants require
months to stand and walk, and even longer to learn to jump, run, and
stand on one leg.

1. In child development, one of the tests used to determine if the child is acquiring advanced
loco- motion skills is the ability to jump on one leg.

24

Locomotion 25

hip abduction angle (6) abduction-adduction

@ 0 knee flexion angle (o)

‘ N0
N ‘

hip flexion angle ()

Figure 2.6

Two examples of legs with three degrees of freedom.

There is also the potential for great variety in the complexity of each
individual leg. Once again, the biological world provides ample
examples at both extremes. For instance, in the case of the caterpillar,
each leg is extended using hydraulic pressure by constricting the body
cavity and forcing an increase in pressure, and each leg is retracted
longitudinally by relaxing the hydraulic pressure, then activating a
single tensile muscle that pulls the leg in toward the body. Each leg has
only a single degree of freedom, which is oriented longi- tudinally along
the leg. Forward locomotion depends on the hydraulic pressure in the
body, which extends the distance between pairs of legs. The caterpillar
leg is therefore mechani- cally very simple, using a minimal number of
extrinsic muscles to achieve complex overall locomotion.

At the other extreme, the human leg has more than seven major
degrees of freedom, combined with further actuation at the toes. More
than fifteen muscle groups actuate eight complex joints.

In the case of legged mobile robots, a minimum of two degrees of
freedom is generally required to move a leg forward by lifting the leg
and swinging it forward. More common is the addition of a third degree

25

of freedom for more complex maneuvers, resulting in legs such as
those shown in figure 2.6. Recent successes in the creation of bipedal
WLRAYG robots have added a fourth degree of freedom at the ankf&
joint. The ankle enables more consistent ground contact by actuating
the pose of the sole of the foot.

In general, adding degrees of freedom to a robot leg increases the
maneuverability of the robot, both augmenting the range of terrains on
which it can travel and the ability of the robot to travel with a variety of
gaits. The primary disadvantages of additional joints and actuators
are, of course, energy, control, and mass. Additional actuators require
energy and control, and they also add to leg mass, further increasing
power and load requirements on existing actuators.

26

Locomotion 27

e - >
free fly
—h- - —
——
g
changeover walking galloping

Figure 2.7

Two gaits with four legs. Because this robot has fewer than six legs, static walking is not generally
possible.

In the case of a multilegged mobile robot, there is the issue of leg
coordination for loco- motion, or gait control. The number of possible
gaits depends on the number of legs [33]. The gait is a sequence of lift
and release events for the individual legs. For a mobile robot with k
legs, the total number of possible events N for a walking machine is

N =(2k-1)! (2.1)

27

For a biped walker k = 2 legs, the number of possible events N is

- -
-

28

Locomotion 29

The six different events are
1. lift right leg;
2. lift left leg;
3. release right leg;
4. release left leg;
5. lift both legs together;

6. release both legs together.

Of course, this quickly grows quite large. For example, a robot with
six legs has far more gaits theoretically:

N=11! =

39916800 (2:3)

Figures 2.7 and 2.8 depict several four-legged gaits and the static six-
legged tripod gait.

1.2.2 Examples of legged robot locomotion

Although there are no high-volume industrial applications to date,
legged locomotion is an important area of long-term research. Several
interesting designs are presented below, beginning with the one-
legged robot and finishing with six-legged robots. For a very good
overview of climbing and walking robots, see
http://www.uwe.ac.uk/clawar/.

1.2.2.1 One leg

The minimum number of legs a legged robot can have is, of course,
one. Minimizing the number of legs is beneficial for several reasons.
Body mass is particularly important to walking machines, and the
single leg minimizes cumulative leg mass. Leg coordination is required
when a robot has several legs, but with one leg no such coordination
is needed. Perhaps most importantly, the one-legged robot maximizes
the basic advantage of legged locomotion: legs have single points of
contact with the ground in lieu of an entire track, as with wheels. A

29

http://www.uwe.ac.uk/clawar/

single-legged robot requires only a sequence of single contacts,
making it amenable to the roughest terrain. Furthermore, a hopping
tes88PEAN dynamically cross a gap that is larger than its stride by takirig
a running start, whereas a multilegged walking robot that cannot run is
limited to crossing gaps that are as large as its reach.

The major challenge in creating a single-legged robot is balance.
For a robot with one leg, static walking is not only impossible but static
stability when stationary is also impos- sible. The robot must actively
balance itself by either changing its center of gravity or by imparting
corrective forces. Thus, the successful single-legged robot must be
dynamically stable.

30

Locomotion 31
——-
%
- >

Figure 2.8

Static walking with six legs. A tripod formed by three legs always exists.

Figure 2.9 shows the Raibert hopper [28, 124], one of the most well-
known single- legged hopping robots created. This robot makes
continuous corrections to body attitude and to robot velocity by
adjusting the leg angle with respect to the body. The actuation is
hydraulic, including high-power longitudinal extension of the leg during
stance to hop back into the air. Although powerful, these actuators
require a large, off-board hydraulic pump to be connected to the robot
at all times.

Figure 2.10 shows a more energy-efficient design developed more
recently [46]. Instead of supplying power by means of an off-board
hydraulic pump, the bow leg hopper is designed to capture the kinetic
energy of the robot as it lands, using an efficient bow spring leg. This
spring returns approximately 85% of the energy, meaning that stable

31

Locomotion 32
hopping requires only the addition of 15% of the required energy on

each hop. This robot, which is constrained along one axis by a boom,
has demonstrated continuous hopping for 20 minutes using a single set
of batteries carried on board the robot. As with the Raibert hopper, the
bow leg hopper controls velocity by changing the angle of the leg to
the body at the hip joint.

32

Locomotion 33

hydraulie sclunlor and
pesitionfvelocity sensora

Figure 2.9

The Raibert hopper [28, 124]. Image courtesy of the LeglLab and Marc Raibert. © 1983.

Figure 2.10

The 2D single bow leg hopper [46]. Image courtesy of H. Benjamin Brown and Garth Zeglin, CMU.

33

Locomotion 34

‘ Specifications:

Weiqﬁt: 7 kg
Height: 58 cm
Neck DOF: 4
Body DOF: 2

Arm DOF: 2x5
Legs DOF: 2 X
6 Five-finger Hands

Figure 2.11

The Sony SDR-4X Il, © 2003 Sony Corporation.

The paper of Ringrose [125] demonstrates the very important duality
of mechanics and controls as applied to a single-legged hopping
machine. Often clever mechanical design can perform the same
operations as complex active control circuitry. In this robot, the phys-
ical shape of the foot is exactly the right curve so that when the robot
lands without being perfectly vertical, the proper corrective force is
provided from the impact, making the robot vertical by the next landing.
This robot is dynamically stable, and is furthermore passive. The
correction is provided by physical interactions between the robot and its
environment, with no computer or any active control in the loop.

1.2.2.2 Two legs (biped)

Avariety of successful bipedal robots have been demonstrated over the
past ten years. Two legged robots have been shown to run, jump,
travel up and down stairways, and even do aerial tricks such as

34

Locomotion 35
somersaults. In the commercial sector, both Honda and Sony have

made significant advances over the past decade that have enabled
highly capable bipedal robots. Both companies designed small,
powered joints that achieve power-to-weight per- formance unheard of
in commercially available servomotors. These new “intelligent” servos
provide not only strong actuation but also compliant actuation by
means of torque sensing and closed-loop control.

35

Locomotion 36

Specifications:

Maximum speed: 2

km/h Autonomy:

15
min
Weight: 210 kg
Height: 1.82m
Leg DOF: 2x6
Arm DOF: 2x7

Figure 2.12

The humanoid robot P2 from Honda, Japan. © Honda Motor Corporation.

The Sony Dream Robot, model SDR-4X Il, is shown in figure 2.11.
This current model is the result of research begun in 1997 with the basic
objective of motion entertainment and communication entertainment
(i.e., dancing and singing). This robot with thirty-eight degrees of
freedom has seven microphones for fine localization of sound, image-
based person recognition, on-board miniature stereo depth-map
reconstruction, and limited speech recognition. Given the goal of fluid
and entertaining motion, Sony spent consider- able effort designing a
motion prototyping application system to enable their engineers to
script dances in a straightforward manner. Note that the SDR-4X Il is
relatively small, standing at 58 cm and weighing only 6.5 kg.

The Honda humanoid project has a significant history but, again,
has tackled the very important engineering challenge of actuation.
Figure 2.12 shows model P2, which is an immediate predecessor to
the most recent Asimo model (advanced step in innovative mobility).

36

Locomotion 37
Note from this picture that the Honda humanoid is much larger than
the SDR- 4X at 120 cm tall and 52 kg. This enables practical mobility
in the human world of stairs and ledges while maintaining a
nonthreatening size and posture. Perhaps the first robot to famously
demonstrate biomimetic bipedal stair climbing and descending, these
Honda humanoid series robots are being designed not for
entertainment purposes but as human aids throughout society. Honda
refers, for instance, to the height of Asimo as the minimum height which
enables it to nonetheless manage operation of the human world, for
instance, control of light switches.

37

Locomotion 38

Specifications:

Weight: 131 [kg]
Height: 1.88[m

DOF in total: 43
Lower Limbs: 2 x 6

Trunk:

Arms: 2x10
Neck: 4
Eyes: 2x2

Figure 2.13

The humanoid robot WABIAN-RIII at Waseda University in Japan [75]. Image courtesy of Atsuo
Takanishi, Waseda University.

An important feature of bipedal robots is their anthropomorphic
shape. They can be built to have the same approximate dimensions as
humans, and this makes them excellent vehi- cles for research in
human-robot interaction. WABIAN is a robot built at Waseda Univer-
sities Japan (figure 2.13) for just such research [75]. WABIAN is
designed to emulate human motion, and is even designed to dance
like ahuman.

Bipedal robots can only be statically stable within some limits, and so
robots such as P2 and WABIAN generally must perform continuous
balance-correcting servoing even when standing still. Furthermore,
each leg must have sufficient capacity to support the full weight of the
robot. In the case of four-legged robots, the balance problem is
facilitated along with the load requirements of each leg. An elegant
design of a biped robot is the Spring Fla- mingo of MIT (figure 2.14).

38

Locomotion 39
This robot inserts springs in series with the leg actuators to achieve a

more elastic gait. Combined with “kneecaps” that limit knee joint angles,
the Fla- mingo achieves surprisingly biomimetic motion.

1.2.2.3 Four legs (quadruped)

Although standing still on four legs is passively stable, walking
remains challenging because to remain stable the robot’s center of
gravity must be actively shifted during the

39

Locomotion 40

Figure 2.14

The Spring Flamingo developed at MIT [123]. Image courtesy of Jerry Pratt, MIT Leg Laboratory.

gait. Sony recently invested several million dollars to develop a four-
legged robot called AIBO (figure 2.15). To create this robot, Sony
produced both a new robot operating system that is near real-time and
new geared servomotors that are of sufficiently high torque to sup- port
the robot, yet back drivable for safety. In addition to developing custom
motors and software, Sony incorporated a color vision system that
enables AIBO to chase a brightly colored ball. The robot is able to
function for at most one hour before requiring recharging. Early sales of
the robot have been very strong, with more than 60,000 units sold in the
first year. Nevertheless, the number of motors and the technology
investment behind this robot dog resulted in a very high price of
approximately $1500.

Four-legged robots have the potential to serve as effective artifacts
for research in human-robot interaction (figure 2.16). Humans can treat
the Sony robot, for example, as a pet and might develop an emotional
relationship similar to that between man and dog. Fur- thermore, Sony
has designed AIBO’s walking style and general behavior to emulate
learn- ing and maturation, resulting in dynamic behavior over time that

40

Locomotion 41
is more interesting for the owner who can track the changing behavior.

As the challenges of high energy storage and motor technology are
solved, it is likely that quadruped robots much more capable than
AIBO will become common throughout the human environment.

1224 Six legs (hexapod)

Six-legged configurations have been extremely popular in mobile
robotics because of their static stability during walking, thus reducing
the control complexity (figures 2.17 and 1.3).

41

Locomotion 42

1 Stereo microphone: Allows AIBO to pick up
surrounding sounds.

2 Head sensor: Senses when a person taps
or pets AIBO on the head.

3 Mode indicator: Shows AIBO’s operation
mode.

4 Eye lights: These light up in blue-green or
red to indicate AIBO’s emotionalstate.

5 Color camera: Allows AIBO to search for

ERS-110 © 1999 Sony Corporation

» objects and recognize them by color and
i movement.
v 8 6 Speaker: Emits various musical tones and
; S sound effects.
2 7 Chinsensor:Senses when a person touches
é AIBO on the chin.
N 8 Pause button: Press to activate AIBO or to
S pause AIBO.
8 9 Chest light: Gives information about the
SEES status of the robot.
| a 10 Paw sensors: Located on the bottom of
o each paw.
~ 11 Tail light: Lights up blue or orange to show
&' AIBO’s emotional state.
w 12 Backsensor: Senses when a person touches

AIBO on the back.
Figure 2.15

AIBO, the artificial dog from Sony, Japan.

In most cases, each leg has three degrees of freedom, including hip
flexion, knee flexion, and hip abduction (see figure 2.6). Genghis is a
commercially available hobby robot that has six legs, each of which
has two degrees of freedom provided by hobby servos (figure 2.18).
Such a robot, which consists only of hip flexion and hip abduction, has
less maneu- verability in rough terrain but performs quite well on flat
ground. Because it consists of a straightforward arrangement of
servomotors and straight legs, such robots can be readily built by a
robot hobbyist.

Insects, which are arguably the most successful locomoting

42

creatures on earth, excel at traversing all forms of terrain with six legs,
even upside down. Currently, the gap between the capabilities of six-
legatPrinsects and artificial six-legged robots is still quite largé®
Interestingly, this is not due to a lack of sufficient numbers of degrees
of freedom on the robots. Rather, insects combine a small number of
active degrees of freedom with passive

43

Locomotion

Specifications:
Weight:1 9k
Height: 0.25m
DOF: 4x3

Figure 2.16

Titan VIII, a quadruped robot developed at Tokyo Institute of Technology.
(http://mozu.mes.titech.ac.jp/research/walk/). © Tokyo Institute of
Technology.

Specifications:
Maximum speed:

0
m/s Weight:1 6
Height: 0.
Length: 0.
No. of legs: 6
DOF intotal: 6
3 Power
consumption:10 W

Figure 2.17

Lauron Il, a hexapod platform developed at the University of Karlsruhe, Germany.

© University of Karlsruhe.

44

44

http://mozu.mes.titech.ac.jp/research/walk/)

Locomotion 45

Figure 2.18

Genghis, one of the most famous walking robots from MIT, uses hobby servomotors as its actuators
(http://www.ai.mit.edu/projects/genghis). © MIT Al Lab.

structures, such as microscopic barbs and textured pads, that increase
the gripping strength of each leg significantly. Robotic research into
such passive tip structures has only recently begun. For example, a
research group is attempting to re-create the complete mechanical
function of the cockroach leg [65].

It is clear from the above examples that legged robots have much
progress to make before they are competitive with their biological
equivalents. Nevertheless, significant gains have been realized
recently, primarily due to advances in motor design. Creating
actuation systems that approach the efficiency of animal muscles
remains far from the reach of robotics, as does energy storage with
the energy densities found in organic life forms.

23 Wheeled Mobile Robots

The wheel has been by far the most popular locomotion mechanism in
mobile robotics and in man-made vehicles in general. It can achieve
very good efficiencies, as demonstrated in figure 2.3, and does so with
a relatively simple mechanical implementation.

In addition, balance is not usually a research problem in wheeled

robot designs, because wheeled robots are almost always designed
45

http://www.ai.mit.edu/projects/genghis)

Locomotion 46
so that all wheels are in ground contact atall times. Thus, three wheels

are sufficient to guarantee stable balance, although, as we shall see
below, two-wheeled robots can also be stable. When more than three
wheels are used, a suspension system is required to allow all wheels
to maintain ground contact when the robot encounters uneven terrain.

Instead of worrying about balance, wheeled robot research tends to
focus on the prob- lems of traction and stability, maneuverability, and
control: can the robot wheels provide

46

Locomotion 47

a) b) c) d)

Swedish 45°

Z W@

—

b

By

Figure 2.19

Thefour basicwheeltypes. (a) Standard wheel: two degrees of freedom; rotation around the (motor-
ized) wheel axle and the contact point.(b) castor wheel: two degrees of freedom; rotation around
an offset steering joint. (c) Swedish wheel: three degrees of freedom; rotation around the
(motorized) wheel axle, around the rollers, and around the contact point. (d) Ball or spherical
wheel: realization technically difficult.

sufficient traction and stability for the robot to cover all of the desired
terrain, and does the robot’s wheeled configuration enable sufficient
control over the velocity of the robot?

23.1 Wheeled locomotion: the design space

As we shall see, there is a very large space of possible wheel
configurations when one con- siders possible techniques for mobile
robot locomotion. We begin by discussing the wheel in detalil, as there
are a number of different wheel types with specific strengths and weak-
nesses. Then, we examine complete wheel configurations that deliver
particular forms of locomotion for a mobile robot.

2.3.1.1 Wheel design

There are four major wheel classes, as shown in figure 2.19. They

differ widely in their kinematics, and therefore the choice of wheel type

has a large effect on the overall kinemat- ics of the mobile robot. The
47

Locomotion 48
standard wheel and the castor wheel have a primary axis of rotation

and are thus highly directional. To move in a different direction, the
wheel must be steered first along a vertical axis. The key difference
between these two wheels is that the standard wheel can accomplish
this steering motion with no side effects, as the center of rotation
passes through the contact patch with the ground, whereas the castor
wheel rotates around an offset axis, causing a force to be imparted to
the robot chassis during steering.

48

Locomotion 49

Figure 2.20

Navlab I, the first autonomous highway vehicle that steers and controls the throttle using vision
and radar sensors [61]. Developed at CMU.

The Swedish wheel and the spherical wheel are both designs that are
less constrained by directionality than the conventional standard
wheel. The Swedish wheel functions as a normal wheel, but provides
low resistance in another direction as well, sometimes perpen- dicular
to the conventional direction, as in the Swedish 90, and sometimes at
an intermedi- ate angle, as in the Swedish 45. The small rollers
attached around the circumference of the wheel are passive and the
wheel’s primary axis serves as the only actively powered joint. The key
advantage of this design is that, although the wheel rotation is powered
only along the one principal axis (through the axle), the wheel can
kinematically move with very little friction along many possible
trajectories, not just forward and backward.

The spherical wheel is a truly omnidirectional wheel, often designed
so that it may be actively powered to spin along any direction. One
mechanism for implementing this spher- ical design imitates the
computer mouse, providing actively powered rollers that rest against
the top surface of the sphere and impart rotational force.

Regardless of what wheel is used, in robots designed for all-terrain

49

Locomotion 50
environments and in robots with more than three wheels, a suspension

system is normally required to maintain wheel contact with the ground.
One of the simplest approaches to suspension is to design flexibility
into the wheel itself. For instance, in the case of some four-wheeled
indoor robots that use castor wheels, manufacturers have applied a
deformable tire of soft rubber to the wheel to create a primitive
suspension. Of course, this limited solution cannot compete with a
sophisticated suspension system in applications where the robot
needs a more dynamic suspension for significantly non flat terrain.

50

Locomotion 51

23.1.2 Wheel geometry

The choice of wheel types for a mobile robot is strongly linked to the
choice of wheel arrangement, or wheel geometry. The mobile robot
designer must consider these two issues simultaneously when
designing the locomoting mechanism of a wheeled robot. Why do
wheel type and wheel geometry matter? Three fundamental
characteristics of a robot are governed by these choices:

maneuverability, controllability, and stability.
Unlike automobiles, which are largely designed for a highly
standardized environment (the road network), mobile robots are
designed for applications in a wide variety of situa- tions. Automobiles
all share similar wheel configurations because there is one region in
the design space that maximizes maneuverability, controllability, and
stability for their stan- dard environment: the paved roadway.

However, there is no single wheel configuration that maximizes these

qualities for the variety of environments faced by different mobile
robots. So you will see great variety in the wheel configurations of
mobile robots. In fact, few robots use the Ackerman wheel
configuration of the automobile because of its poor maneu- verability,
with the exception of mobile robots designed for the road system
(figure 2.20). Table 2.1 gives an overview of wheel configurations
ordered by the number of wheels.
This table shows both the selection of particular wheel types and their
geometric configu- ration on the robot chassis. Note that some of the
configurations shown are of little use in mobile robot applications. For
instance, the two-wheeled bicycle arrangement has moder- ate
maneuverability and poor controllability. Like a single-legged hopping
machine, it can never stand still. Nevertheless, this table provides an
indication of the large variety of wheel configurations that are possible
in mobile robot design.

The number of variations in table 2.1 is quite large. However, there
are important trends and groupings that can aid in comprehending the
advantages and disadvantages of each configuration. Below, we
identify some of the key trade-offs in terms of the three issues we
identified earlier: stability, maneuverability, and controllability.

51

Locomotion 52

2.3.1.3 Stability

Surprisingly, the minimum number of wheels required for static stability
is two. As shown above, a two-wheel differential-drive robot can
achieve static stability if the center of mass is below the wheel axle. Cye
is a commercial mobile robot that uses this wheel configura- tion (figure
2.21).

However, under ordinary circumstances such a solution requires
wheel diameters that are impractically large. Dynamics can also cause
a two-wheeled robot to strike the floor with a third point of contact, for
instance, with sufficiently high motor torques from stand- still.
Conventionally, static stability requires a minimum of three wheels,
with the addi- tional caveat that the center of gravity must be contained
within the triangle formed by the ground contact points of the wheels.
Stability can be further improved by adding more wheels, although
once the number of contact points exceeds three, the hyperstatic nature
of the geometry will require some form of flexible suspension on
uneven terrain.

52

Locomotion

Ta

ble 2.1

Wheel configurations for rolling vehicles

of o .
s Arrangement Description Typical examples

2 One steering wheel in the Bicycle, motorcycle
front, one traction wheel in

= & the rear
Two-wheel differential drive | Cye personal robot
— with the center of mass
(COM) below the axle
—

3 = Two-wheel centered |Nomad Scout,
differen- tial drive with a |smartRob EPFL
third point of contact

|
Two independently driven Many indoor robots,
— wheels in the rear/front, 1 including the EPFL
unpowered omnidirectional |robots Pygmalion and
wheel in the front/rear Alice
—
Two connected traction Piaggio minitrucks
wheels (differential) in rear,
1 steered free wheel in front
Two free wheels in rear, 1 Neptune (Carnegie
— steered traction wheel in Mellon University),
front Hero-1
 —

Three motorized Swedish or
spherical wheels arranged in
a triangle; omnidirectional
move- ment is possible

Stanford wheel
Tribolo EPFL,

Palm Pilot Robot Kit
(CMU)

Three synchronously
motorized and steered
wheels; the orienta- tion is
not controllable

“Synchro drive”
Denning MRV-2,
Geor- gia Institute of
Technol-

ogy, I-Robot B24,
Nomad 200

53

Locomotion

Ta

ble 2.1

Wheel configurations for rolling vehicles

54

of
wheels

Arrangement

Description

Typical examples

4

1

Two motorized wheels in the
rear, 2 steered wheels in the
front; steering has to be
differ- ent for the 2 wheels to
avoid slipping/skidding.

Car with rear-wheel
drive

I

=
o

Two motorized and steered
wheels in the front, 2 free
wheels in the rear; steering
has to be different for the 2
wheels to avoid
slipping/skidding.

Car with front-wheel
drive

g0

=
=

Four steered and motorized
wheels

Four-wheel drive, four-
wheel steering Hyperion
(CMU)

Two traction wheels
(differen- tial) in rear/front, 2
omnidirec- tional wheels in
the front/rear

Charlie (DMT-EPFL)

Four omnidirectional wheels

Carnegie Mellon Uranus

O
O

Two-wheel differential drive
with 2 additional points of
con- tact

EPFL Khepera,
Hyperbot Chip

i 8

Four motorized and steered
castor wheels

Nomad XR4000

54

Locomotion 55

Table 2.1

Wheel configurations for rolling vehicles

Wﬁé’és Arrangement Description Typical examples

6 Two motorized and steered | First
wheels aligned in center, 1
|f|: :::I omnidirectional wheel at

C each corner

Two traction wheels Terregator (Carnegie
— (differen- tial) in center, 1 Mel- lon University)
omnidirec- tional wheel at
each corner

 —

Icons for the each wheel type are as follows:

unpowered omnidirectional wheel (spherical, castor, Swedish);

motorized Swedish wheel (Stanford wheel);

unpowered standard wheel;

motorized standard wheel;

motorized and steered castor wheel;

steered standard wheel;

connected wheels.

SRRIREE

2.3.1.4 Maneuverability

Some robots are omnidirectional, meaning that they can move at any

time in any direction along the ground plane (x, y) regardless of the

orientation of the robot around its vertical axis. This level of

maneuverability requires wheels that can move in more than just one

direction, and so omnidirectional robots usually employ Swedish or
55

Locomotion 56
spherical wheels that are powered. A good example is Uranus, shown

in figure 2.24. This robot uses four Swed- ish wheels to rotate and
translate independently and without constraints.

56

Locomotion 57

Figure 2.21

Cye, a commercially available domestic robot that can vacuum and make deliveries in the home, is
built by Aethon Inc. (http://www.aethon.com). © Aethon Inc.

In general, the ground clearance of robots with Swedish and
spherical wheels is some- what limited due to the mechanical
constraints of constructing omnidirectional wheels. An interesting
recent solution to the problem of omnidirectional navigation while
solving this ground-clearance problem is the four-castor wheel
configuration in which each castor wheel is actively steered and
actively translated. In this configuration, the robot is truly
omnidirectional because, even if the castor wheels are facing a
direction perpendicular to the desired direction of travel, the robot can
still move in the desired direction by steering these wheels. Because
the vertical axis is offset from the ground-contact path, the result of this
steering motion is robot motion.

In the research community, other classes of mobile robots are
popular which achieve high maneuverability, only slightly inferior to
that of the omnidirectional configurations. In such robots, motion in a
particular direction may initially require a rotational motion. With a
circular chassis and an axis of rotation at the center of the robot, such
a robot can spin without changing its ground footprint. The most
popular such robot is the two-wheel differential-drive robot where the
two wheels rotate around the center point of the robot. One or two
additional ground contact points may be used for stability, based on the

57

Locomotion 58
appli- cation specifics.

In contrast to the above configurations, consider the Ackerman
steering configuration common in automobiles. Such a vehicle typically
has a turning diameter that is larger than the car. Furthermore, for such
avehicle to move sideways requires a parking maneuver con- sisting of
repeated changes in direction forward and backward. Nevertheless,
Ackerman steering geometries have been especially popular in the
hobby robotics market, where a robot can be built by starting with a
remote control racecar kit and adding sensing and autonomy to the
existing mechanism. In addition, the limited maneuverability of
Ackerman

58

Locomotion 59

steering has animportant advantage: its directionality and steering
geometry provide it with very good lateral stability in high-speed turns.

2.3.1.5 Controllability

There is generally an inverse correlation between controllability and
maneuverability. For example, the omnidirectional designs such as the
four-castor wheel configuration require significant processing to
convertdesiredrotational andtranslational velocities to individual wheel
commands. Furthermore, such omnidirectional designs often have
greater degrees of freedom at the wheel. For instance, the Swedish
wheel has a set of free rollers along the wheel perimeter. These
degrees of freedom cause an accumulation of slippage, tend to reduce
dead-reckoning accuracy and increase the design complexity.

Controlling an omnidirectional robot for a specific direction of travel
is also more diffi- cult and often less accurate when compared to less
maneuverable designs. For example, an Ackerman steering vehicle
can go straight simply by locking the steerable wheels and driv- ing the
drive wheels. In a differential-drive vehicle, the two motors attached to
the two wheels must be driven along exactly the same velocity profile,
which can be challenging considering variations between wheels,
motors, and environmental differences. With four- wheel omnidrive,
such as the Uranus robot, which has four Swedish wheels, the problem
is even harder because all four wheels must be driven at exactly the
same speed for the robot to travel in a perfectly straight line.

In summary, there is no “ideal” drive configuration that
simultaneously maximizes sta- bility, maneuverability, and
controllability. Each mobile robot application places unique constraints
on the robot design problem, and the designer’s task is to choose the
most appropriate drive configuration possible from among this space
of compromises.

23.2 Wheeled locomotion: case studies

Below we describe four specific wheel configurations, in order to
demonstrate concrete applications of the concepts discussed above to mobile
robots built for real-world activities.

59

Locomotion 60

2.3.21 Synchro drive

The synchro drive configuration (figure 2.22) is a popular arrangement
of wheels in indoor mobile robot applications. It is an interesting
configuration because, although there are three driven and steered
wheels, only two motors are used in total. The one translation motor
sets the speed of all three wheels together, and the one steering motor
spins all the wheels together about each of their individual vertical
steering axes. But note that the wheels are being steered with respect
to the robot chassis, and therefore there is no direct way of reorienting
the robot chassis. Infact, the chassis orientation does drift over time due
to uneven tire slippage, causing rotational dead-reckoning error.

60

Locomotion 61

driving pulley

hY A
steerings_ ™

NN

<7 motor

rolling axis

Figure 2.22

Synchro drive: The robot can move in any direction; however, the orientation of the chassis is not
controllable.

Synchro drive is particularly advantageous in cases where
omnidirectionality is sought. So long as each vertical steering axis is
aligned with the contact path of each tire, the robot can always reorient
its wheels and move along a new trajectory without changing its foot-
print. Of course, if the robot chassis has directionality and the
designers intend to reorient the chassis purposefully, then synchro
drive is only appropriate when combined with an independently
rotating turret that attaches to the wheel chassis. Commercial research
robots such as the Nomadics 150 or the RWI B21r have been sold
with this configuration (figure 1.12).

In terms of dead reckoning, synchro drive systems are generally
superior to true omni- directional configurations but inferior to
differential-drive and Ackerman steering systems. There are two main
reasons for this. First and foremost, the translation motor generally
drives the three wheels using a single belt. Because of to slop and
backlash in the drive train, whenever the drive motor engages, the
closest wheel begins spinning before the fur- thest wheel, causing a

61

Locomotion 62
small change in the orientation of the chassis. With additional changes

in motor speed, these small angular shifts accumulate to create a large
error in ori- entation during dead reckoning. Second, the mobile robot
has no direct control over the ori- entation of the chassis. Depending on
the orientation of the chassis, the wheel thrust can be highly
asymmetric, with two wheels on one side and the third wheel alone, or
symmetric, with one wheel on each side and one wheel straight ahead
or behind, as shown in figure

2.22. The asymmetric cases result in a variety of errors when tire-
ground slippage can occur, again causing errors in dead reckoning
of robot orientation.

62

Locomotion 63

S - spheric moto

Figure 2.23

The Tribolo designed at EPFL (Swiss Federal Institute of Technology, Lausanne, Switzerland. Left:
arrangement of spheric bearings and motors (bottom view). Right: Picture of the robot without
the spherical wheels (bottom view).

2.3.22 Omnidirectional drive

As we will see later in section 3.4.2, omnidirectional movement is of
great interest for com- plete maneuverability. Omnidirectional robots
that are able to move in any direction (x, y,0) at any time are also
holonomic (see section 3.4.2). They can be realized by either using
spherical, castor, or Swedish wheels. Three examples of such
holonomic robots are presented below.

Omnidirectional locomotion with three spherical wheels. The
omnidirectional robot depicted in figure 2.23 is based on three
spherical wheels, each actuated by one motor. In this design, the
spherical wheels are suspended by three contact points, two given by
spher- ical bearings and one by a wheel connected to the motor axle.
This concept provides excel- lent maneuverability and is simple in
design. However, it is limited to flat surfaces and small loads, and it is
quite difficult to find round wheels with high friction coefficients.

63

Locomotion 64
Omnidirectional locomotion with four Swedish wheels. The

omnidirectional arrange- ment depicted in figure 2.24 has been used
successfully on several research robots, includ- ing the Carnegie
Mellon Uranus. This configuration consists of four Swedish 45-degree
wheels, each driven by a separate motor. By varying the direction of
rotation and relative speeds of the four wheels, the robot can be
moved along any trajectory in the plane and, even more impressively,
can simultaneously spin around its vertical axis.

64

Locomotion 65

Figure 2.24

The Carnegie Mellon Uranus robot, an omnidirectional robot with four powered-swedish 45 wheels.

For example, when all four wheels spin “forward” or “backward” the
robot as a whole moves in a straight line forward or backward,
respectively. However, when one diagonal pair of wheels is spunin the
same direction and the other diagonal pair is spun in the oppo- site
direction, the robot moves laterally.

This four-wheel arrangement of Swedish wheels is not minimal in
terms of control motors. Because there are only three degrees of
freedom in the plane, one can build a three- wheel omnidirectional
robot chassis using three Swedish 90-degree wheels as shown in
table 2.1. However, existing examples such as Uranus have been
designed with four wheels owing to capacity and stability
considerations.

One application for which such omnidirectional designs are
particularly amenable is mobile manipulation. In this case, it is
desirable to reduce the degrees of freedom of the manipulator arm to
save arm mass by using the mobile robot chassis motion for gross
motion. As with humans, it would be ideal if the base could move
omnidirectionally with- out greatly impacting the position of the
manipulator tip, and a base such as Uranus can afford precisely such
capabilities.

65

Locomotion 66
Omnidirectional locomotion with four castor wheels and eight motors. Another solu-

tion for omnidirectionality is to use castor wheels. This is done for the Nomad XR4000
from Nomadic Technologies (fig. 2.25), giving it excellent maneuverability. Unfortu-
nately, Nomadic has ceased production of mobile robots.

The above three examples are drawn from table 2.1, but this is not
an exhaustive list of all wheeled locomotion techniques. Hybrid
approaches that combine legged and wheeled locomotion, or tracked
and wheeled locomotion, can also offer particular advantages. Below
are two unique designs created for specialized applications.

66

Locomotion 67

Figure 2.25

The Nomad XR4000 from Nomadic Technologies had an arrangement of four castor wheels for holo-
nomic motion. All the castor wheels are driven and steered, thus requiring a precise synchronization
and coordination to obtain a precise movement in x, y and 0 .

2.3.2.3 Tracked slip/skid locomotion

In the wheel configurations discussed above, we have made the
assumption that wheels are not allowed to skid against the surface. An
alternative form of steering, termed slip/skid, may be used to reorient
the robot by spinning wheels that are facing the same direction at
different speeds or in opposite directions. The army tank operates this
way, and the Nanokhod (figure 2.26) is an example of a mobile robot
based on the same concept.

Robots that make use of tread have much larger ground contact
patches, and this can sig- nificantly improve their maneuverability in
loose terrain compared to conventional wheeled designs. However,
due to this large ground contact patch, changing the orientation of the
robot usually requires a skidding turn, wherein a large portion of the
track must slide against the terrain.

The disadvantage of such configurations is coupled to the slip/skid
steering. Because of the large amount of skidding during a turn, the
exact center of rotation of the robot is hard to predict and the exact

67

Locomotion 68
change in position and orientation is also subject to variations

depending on the ground friction. Therefore, dead reckoning on such
robots is highly inac- curate. This is the trade-off that is made in return
for extremely good maneuverability and traction over rough and loose
terrain. Furthermore, a slip/skid approach on a high-friction surface can
quickly overcome the torque capabilities of the motors being used. In
terms of power efficiency, this approach is reasonably efficient on loose
terrain but extremely inef- ficient otherwise.

68

Locomotion 69

Payload Cab

Track Umt 2 T
. Tether Wires. }‘i’_‘"\ ﬁ i

“/:%@“3 A

a\ * Payload
/] Cab Lever

Tether Box

Track Unit 1
= Model A - Nanokhod

Figure 2.26

The microrover Nanokhod, developed by von Hoerner & Sulger GmbH and the Max Planck Institute,
Mainz, for the European Space Agency (ESA), will probably go to Mars [138, 154].

2324 Walking wheels

Walking robots might offer the best maneuverability in rough terrain.
However, they are inefficient on flat ground and need sophisticated
control. Hybrid solutions, combining the adaptability of legs with the
efficiency of wheels, offer an interesting compromise. Solu- tions that
passively adapt to the terrain are of particular interest for field and space
robotics. The Sojourner robot of NASA/JPL (see figure 1.2) represents
such a hybrid solution, able to overcome objects up to the size of the
wheels. A more recent mobile robot design for similar applications has
recently been produced by EPFL (figure 2.27). This robot, called
Shrimp, has six motorized wheels and is capable of climbing objects
up to two times its wheel diameter [97, 133]. This enables it to climb
regular stairs though the robot is even smaller than the Sojourner.
Using a rhombus configuration, the Shrimp has a steering wheel in the
front and the rear, and two wheels arranged on a bogie on each side.
The front wheel has a spring suspension to guarantee optimal ground

69

Locomotion 70
contact of all wheels at any time. The steering of the rover is realized

by synchronizing the steering of the front and rear wheels and the
speed difference of the bogie wheels. This allows for high-precision
maneuvers and turning on the spot with minimum slip/skid of the four
center wheels. The use of parallel articulations for the front wheel and
the bogies creates a virtual center of rotation at the level of the wheel
axis. This ensures maximum stability and climbing abilities even for very
low friction coefficients between the wheel and the ground.

70

Locomotion 71

Figure 2.27

Shrimp, an all-terrain robot with outstanding passive climbing abilities (EPFL [97, 133]).

The climbing ability of the Shrimp is extraordinary in comparison to
most robots of sim- ilar mechanical complexity, owing much to the
specific geometry and thereby the manner in which the center of mass
(COM) of the robot shifts with respect to the wheels over time. In
contrast, the Personal Rover demonstrates active COM shifting to
climb ledges that are also several times the diameter of its wheels, as
demonstrated in figure 2.28. A majority of the weight of the Personal
Rover is borne at the upper end of its swinging boom. A dedi- cated
motor drives the boom to change the front/rear weight distribution in
order to facili- tate step-climbing. Because this COM-shifting scheme
is active, a control loop must explicitly decide how to move the boom
during a climbing scenario. In this case the Per- sonal Rover
accomplished this closed-loop control by inferring terrain based on
measure- ments of current flowing to each independently driven wheel
[66].

As mobile robotics research matures we find ourselves able to

71

Locomotion 72
design more intricate mechanical systems. At the same time, the

control problems of inverse kinematics and dynamics are now so
readily conquered that these complex mechanics can in general be
controlled. So, in the near future, we can expect to see a great number
of unique, hybrid mobile robots that draw together advantages from
several of the underlying locomotion mechanisms that we have
discussed in this chapter. They will each be technologically
impressive, and each will be designed as the expert robot for its
particular environmental niche.

72

Locomotion

Figure 2.28

The Personal Rover, demonstrating ledge climbing using active center-of-mass shifting.

73

73

74

Chapter 3

75

76

Chapter 5

CHAPT

3. Research Overview

NhAantAarv

Autonomous robots

Both animals and robots manipulate objects in their environment in order to achieve
certain goals. Animals use their senses (e.g. vision, touch, smell) to probe the
environment. The resulting information, in many cases also en- hanced by the
information available from internal states (based on short-term or long-term memory),
is processed in the brain, often resulting in an action carried out by the animal, with
the use of its limbs.

Similary, robots gain information of the surroundings, using their sensors. The
information is processed in the robot’s brain’, consisting of one orseveral processors,
resulting in motor signals that are sent to the actuators (e.g. motors) of the robot.

In this course, the problem of providing robots with the ability of making rational,
intelligent decisions will be central. Thus, the development of robotic brains is the main
theme of the course. However, a robotic brain cannot op- erate in isolation: It needs
sensory inputs, and it must produce motor output in order to influence objects in the
environment. Thus, while it is the author's view that the main challenge in
contemporary robotics lies with the devel- opment of robotic brains, consideration of
the actual hardware, i.e. sensors, processors, motors etc., is certainly very important
as well.

This chapter gives a brief overview of robotic hardware, i.e. the actual frame
(body) of a robot, as well as its sensors, actuators, processors etc. The

77

Chapter 5

The term control system is commonly used (instead of the term robotic brain). However, this term
is misleading, as it leads the reader to think of classical control theory. Concepts from classical control
theory are relevant in robots; For example, the low-level control of the motors of robots is often taken
care of by PI- or PID-regulators. However, autonomous robots, i.e. freely moving robots that operate
without direct human supervision, are expected to function in complex, unstructured environments,
and to make their own decisions concerning which action to take in any given situation. In such cases,
systems based only on classical control theory are simply insufficient. Thus, hereafter, the term robotic
brain (or, simply, brain) will be used when referring to the system that provides an autonomous robot,
however simple, with the ability to process information and decide upon which actions to take.

78

CHAPTER 1. AUTONOMOUS ROBOTS 79

Figure 1.1: Left panel: A Boe-bot. Right panel: Awheeled robot currently under construction in
the Adaptive systems research group at Chalmers.

various hardware-related issues will be studied in greater detail in the second half of
the course, which will involve the construction of an actual robot of the kind shown in
the left panel of Fig. 1.1.

1.1 Robot types

The are many different types of robots, and the taxonomy of such machines can be
constructed in various ways. For example, one may classify differentkinds of robots
based on their complexity, their likeness to humans (or animals), their way of moving
etc. In this course we shall limit ourselves to mobile robots, that is, robots that are
able to move freely using, for example, wheels. The other main category of robots are
stationary robotic arms, also referred to as robotic manipulators. Of course, as with
any taxonomy, there are always ex- amples that do not fit neatly into any of the
available categories. Forexample, a smart home equipped with a central computer
and, perhaps, some form of manipulation capabilities, can also be considered a robot,
albeit of a different kind.

Robotic manipulators constitute a very important class of robots and they are used
extensively in many industries, for example in assembly lines in the vehicle industry.
However, such robots normally follow a predefined move- ment sequence and are not
equipped with behaviors (such as collision avoid- ance) designed to avoid harming
people. While there is nothing preventing the use of, for instance, sonar proximity
sensors on arobotic manipulator, such op- tions are rarely used. Instead, manipulators
are confined to robotic work cells,

79

CHAPTER 1. AUTONOMOUS ROBOTS 80

Figure 1.2: A Kondo humanoid robot. Left panel: Front view. Right panel: Rear view.

in which people are forbidden to enter while the manipulator is active.

By contrast, in this course, we shall consider autonomous robots, i.e. robots that
are capable of making their own decisions (depending on the situation at hand) rather
than merely executing a pre-defined sequence of motions. In fact, since most robots
equipped with such decision-making capabilities are mo- bile, one may define an
autonomous robot as a mobile robot with the ability to make decisions. Two examples
of mobile robots can be seen in Fig. 1.1. The left panel shows a Boe-bot, which will
be assembled and used in the second half of the course. Some of its main
advantages are its small size (its length is around 0.14 m and its width 0.11 m) and
its simplicity. Needless to say, the robot also has several limitations; for example, its
onboard processor (micro- controller) is quite slow. However, on balance, the Boe-bot
provides a good introduction to the field of mobile robots. The right panel of Fig. 1.1
shows atwo-wheeled differentially steered robot which, although still under construc-
tion at the Adaptive systems research group at Chalmers, is already being used in
several research projects. This robot has a diameter of 0.40 m and a height of around
1.00 m.

Robotic manipulators have long dominated the market for robots, but with the
advent of low-cost mobile robots the situation is changing: In 2007, the number of
mobile robots surpassed the number of manipulators for the first time, and the gap is
expected to widen over the next decades.

The class of mobile robots can be further divided into subclasses, the most

80

CHAPTER 1. AUTONOMOUS ROBOTS 81

Figure 1.3: The aluminium frame of a Boe-bot.

important being legged robots and wheeled robots. Other kinds, such as fly- ing
robots, exist as well, but will not be considered in this course. The class of legged
robots can be subdivided based on the number of legs, the most common types being
bipedal robots (with two legs) and quadrupedal robots (with four legs). Most bipedal
robots resemble humans, at least to some extent; such robots are referred to as
humanoid robots. An example of a humanoid robot is shown in Fig. 1.2. Humanoid
robots that (unlike the robot shown in Fig. 1.2) not only have the approximate shape
of a human, but have also been equipped with more detailed human-like features,
e.g. artificial skin, artificial hair etc., are called androids. It should be noted that the
term humanoid refers to the shape of the robot, not its size; in fact, many humanoid
robots are quite small. For example, the Kondo robot shown in Fig. 1.2 is
approximately 0.35 m tall.

Some robots are partly humanoid. For example, the wheeled robot shown in the
right panel of Fig. 1.1 is currently being equipped with a humanoid up- per body. Unlike
a fully humanoid robot, this robot need not be actively bal- anced, but will still exhibit
many desirable features of humanoid robots, such as two arms for grasping and lifting
objects, gesturing etc., as well as a head that will be equipped with two cameras for
stereo vision and microphones providing capabilities for listening and speaking.

81

CHAPTER 1. AUTONOMOUS ROBOTS 82

Figure 1.4: Left panel: Aluminium parts used in the construction of a rotating base for a
humanoid upper body. The servo motor used for rotating the base is also shown, as well as
the screws, washers and nuts. Right panel: The assembled base.

1.2 Robotic hardware

1.2.1 Construction material

Regarding the material used in the actual frame of the robot, several options are
available, such as e.g. aluminium, steel, various forms of plastic etc. The frame of a
robot should, of course, preferably be constructed using a material that is both sturdy
and light and, for that reason, aluminium is often chosen. Albeit somewhat expensive,
aluminium combines toughness with lowweight in a near-optimal way, at least for
small mobile robots. Steel is typically too heavy to be practical in a small robot,
whereas many forms of plastic eas- ily break. The frame of the robot used in this
course (the Boe-bot) is made in aluminium, and is shown in Fig. 1.3. The left panel
of Fig 1.4 shows the aluminium parts used in a rotating base for a humanoid upper
body. The as- sembled base, which can rotate around the vertical axis, is shown in
the right panel.

1.2.2 Sensors

The purpose of robotic sensors is to measure either some physical characteris- tic of
the robot (for example, its acceleration) or some aspect of its environment (for example,
the detected intensity of a light source). The raw data thus ob- tained must then, in
most cases, be processed further before being used in the brain of the robot. For
example, an infrared (IR) proximity sensor may pro- vide a voltage (depending on the
distance to the detected object) as its read- ing, which can then be converted to a
distance, using the characteristics of the sensor available from its data sheet.

82

CHAPTER 1. AUTONOMOUS ROBOTS 83

Figure 1.5: Left panel: A Khepera Il robot. Note the IR proximity sensors (small black
rectangles around the periphery of the robot), consisting of an emitter and a detector. Right
panel: A Sharp GP2D12 infrared sensor.

Needless to say, there exists a great variety of sensors for mobile robots. Here,
only a brief introduction will be given, focusing on a few fundamental sensor types.

Infrared proximity sensors

An infrared proximity sensor (or IR sensor, for short), consists of an emitter and a
detector. The emitter, a light-emitting diode (LED), sends out infrared light, which
bounces off nearby objects, and the reflected light is then mea- sured by the detector
(e.g. a phototransistor). Some IR sensors can also be used for measuring the ambient
light level, i.e. the light observed by the detector when the emitter is switched off. As
an example, consider the Khepera robot (manufactured by K-Team, www.k-
team.com), shown in the left panel Fig. 1.5. This robot is equipped with eight IR
sensors, capable of measuring both am- bient and reflected light. The range of IR
sensors is quite short, though. In the Khepera robot, reflected light measurements
are only useful to a distance of around 0.050 m from the robot, i.e. approximately one
robot diameter, even though other IR sensors have longer range. Another example is
the Sharp GP2D12 IR sensor, shown in the right panel of Fig. 1.5. This sensor detects
ob- jects in the range [0.10, 0.80] m. It operates using a form of triangulation: Light is
emitted from the sensor and, if an object is detected, the reflected light is re- ceived at
an angle that depends on the distance to the detected object. The raw signal from the
sensor consists of a voltage that can be mapped to a distance. The mapping is non-
linear, and for very short distances, the sensor cannot give

83

CHAPTER 1. AUTONOMOUS ROBOTS 84

/\ /\

> >

Figure 1.6: The left panel shows a simple encoder, with a single detector (A), that measures
the interruptions of a light beam, producing the curve shown below the encoder. In the right
panel, two detectors are used, making it possible to determine also the direction of rotation.

reliable readings (hence the lower limit of 0.10 m).

Digital optical encoders

In many applications, accurate position information is essential for a robot, and there
are many different methods for positioning, e.g. inertial navigation, GPS navigation,
landmark detection etc., some of which will be considered in a later chapter. One of the
simplest forms of positioning, however, is dead reck- oning, in which the position of
arobot is determined based on measurements of the distance travelled by each wheel
of the robot. This information, when combined with knowledge of the robot’s physical
properties (i.e. its kinemat- ics, see Chapter 2) allows one to deduce the current
position and heading. The process of measuring the rotation of the wheel of a robot
is an example of odometry, and a sensor capable of such measurements is the
digital optical encoder or, simply, encoder. Essentially, an encoder is a disc made
of glass or plastic, with shaded regions that regularly interrupt a light beam. By count-
ing the number of interruptions, the rotation of the wheel can be deduced, as shown
in the left panel of Fig. 1.6. However, in order to determine also the di- rection of
rotation, a second detector, placed at a quarter of a cycle out of phase

84

CHAPTER 1. AUTONOMOUS ROBOTS 85

Figure 1.7: A Ping ultrasonic distance sensor.

with the first detector, is needed (such an arrangement is called quadrature
encoding, and is shown in the right panel of Fig. 1.6).

Ultrasound (sonar) sensors

Ultrasound sensors, also known as sonar sensors or simply sonars, are based on
time-of-flight measurement. Thus, in order to detect the distance to an ob-ject, a sonar
emits a brief pulse of ultrasonic sound, typically in the frequency range 40-50 kHz?.
The sensor then awaits the echo. Once the echo has been detected, the distance to
the object can be obtained using the fact that sound travels at a speed of around 340
m/s. As in the case of IR sensors, there is both a lower and an upper limit for the
detection range of a sonar sensor. If the distance to an object is too small, the sensor
simply does not have enough time to switch from emission to listening, and the signal
is lost. Similarly, if the distance is too large, the echo may be too weak to be detected.

Fig. 1.7 shows a Ping ultrasonic distance sensor, which is commonly used in
connection with the Boe-bot. This sensor can detect distances to objects in the range
[0.02, 3.00] M.

Laser range finders

Laser range finders (LRFs) commonly rely, like sonar sensors, on time-of-flight
measurements, but involve the speed of light rather than the speed of sound. Thus, a
laser range finder emits pulses of laser light (in the form of thin beams),

2For comparison, a human ear can detect sounds in the range 20 hz to 20 kHz. Thus, the sound
pulse emitted by a sonar sensor is not audible.

85

CHAPTER 1. AUTONOMOUS ROBOTS 86

Figure 1.8: Left panel: A Hokuyo URL-04LX laser range finder. Right panel: A typical reading,
showing the distance to the nearest object in various directions. The pink rays indicate
directions in which no detection is made. The maximum range of the sensor is 4m.

and measures the time it takes for the pulse to bounce off a target and return to the
range finder. An LRF carries out a sweep over many directions® resulting in an
accurate local map of distances to objects along the line-of-sight of each ray. LRFs
are generally very accurate sensors, but they are also much more expensive than
sonars sensors and IR sensors.

A Hokuyo URG-04LX LRF is shown in the left panel of Fig. 1.8. This sensor has a
range of around four meters, with an accuracy of around 1 mm. It can generate
readings in 683 different directions, with a frequency of around 10 Hz. As of the time
of writing (Jan. 2010), a Hokuyo URG-04LX costs around 2,000 USD. The right panel
of Fig. 1.8 shows a typical reading, obtained from the software delivered with the LRF.

Cameras

Cameras are used as the eyes of a robot. In many cases, two cameras are used, in
order to provide the robot with binocular vision, allowing it to estimatethe range to
detected objects. There are many cameras available for robots, for example the
CMUCam series which has been developed especially for use in mobile robots; The
processor connected to the CMUCam is capable of basic image processing. At the
time of writing (Jan. 2010), a CMUCam costs on the order of 150 USD. A low-cost
alternative is to use ordinary webcams, for which prices start around 15 USD. Fig. 1.9
shows a simple robotic head consisting of two servo motors (see below) and a single
webcam.

However, while the actual cameras may not be very costly, the use of cam- eras
is computationally a very expensive procedure. Even at a low resolution,

3A typical angular interval for an LRF is around 180-240 degrees.

86

CHAPTER 1. AUTONOMOUS ROBOTS 87

Figure 1.9: A simple robotic head, consisting of two servo motors and a webcam.

say 320 240 pixels, a webcam will deliver a flow of around 1.5 Mb/s, assum- ing a
frame rate of 20 Hz and a single byte of data per pixel. The actual data transfer is
easily handled by a Universal serial bus (USB), but the data must not only be
transferred but also analyzed, something which is far from trivial. An introduction to
image processing for robots will be given in a later chapter.

Other sensors

In addition to odometry based on digital optical encoders, robot positioning can be
based on inertial sensors, i.e. sensors that measure the time derivatives of the
position or heading angle of the robot. Examples of inertial sensors are
accelerometers, measuring linear acceleration, and gyroscopes, measuring an-
gular acceleration. Essentially, an accelerometer consists of a small object, with mass
m, attached to a spring and damper, as shown in Fig. 1.10. As the system accelerates,
the displacement z of the small object can be used to deduce the acceleration x of the
robot. Given continuous measurements of the accelera- tion, as a function of time,
the position (relative to the starting position) can be

87

CHAPTER 1. AUTONOMOUS ROBOTS 88

A X

Figure 1.10: An accelerometer. The motion of the small object (mass m) resulting from the
acceleration of the larger object to which the accelerometer is attached can be used for
deducing the acceleration.

deduced. For robots operating in outdoor environments, positioning based on the
global positioning system (GPS) is often a good alternative. The GPS re- lies on
24 satellites that transmit radio frequency signals which can be picked up by objects
on Earth. Given the exact position of (at least) three satellites, rel- ative to the position
of e.g. a robot, the absolute position (latitude, longitude, and altitude) of the robot can
be deduced.

Other sensors include strain gauge sensors (measuring deformation), tac- tile
(touch) sensors measuring physical contact between a robot and objects in its
environment, and compasses, measuring the direction of movement.

1.2.3 Actuators

An actuator is a device that allows a robot to take action, i.e. to move or manip- ulate
the surroundings in some other way. Motors, of course, are very common types of
actuators. Other kinds of actuation include, for example, the use of microphones (for
human-robot interaction).

Movements can be generated in various ways, using e.g. electrical motors,
pneumatic or hydraulic systems etc. In this course, we shall only consider electrical,
direct-current (DC) motors and, in particular, servo motors. Thus, when referring to
actuation in this course, the use of such motors isimplied.

Note that actuation normally requires the use of a motor controller in con- nection
with the actual motor. This is so, since the microcontroller (see below) responsible for
sending commands to the motor cannot, in general, provide sufficient current to drive
the motor. The issue of motor control will be consid- ered briefly in connection with the
discussion of servo motors below.

88

CHAPTER 1. AUTONOMOUS ROBOTS 89

Figure 1.11: A conducting wire in a magnetic field. B denotes the magnetic field strength
and I the current through the wire. The Lorentz force F acting on the wire is given by F =1
X B.

FA 1T
—————— > A ———1»
Y
H————1 >

————— >
IF N R —— >

Figure 1.12: A conducting loop of wire placed in a magnetic field. Due to the forces acting
on the loop, it will begin to turn. The loop is shown from above in the right panel, and from
the side in the left panel.

DC motors

Electrical direct current (DC) motors are based on the principle that a force acts on a
wire in a magnetic field if a current is passed through the wire, as illustrated in Fig.
1.11. If instead a current is passed through a closed loop of wire, as illustrated in Fig.
1.12, the forces acting on the two sides of the loop will point in opposite directions,
making the loop turn. A standard DC motor consists of an outer stationary cylinder
(the stator), providing the magnetic field, and an inner, rotating part (the rotor). From
Fig. 1.12 it is clear that the loop will reverse its direction of rotation after a half-turn,
unless the direction of the current is reversed. The role of the commutator, connected
to the rotor of a DC motor, is to reverse the current through the motor every half-turn,
thus allowing continuous rotation. Finally, carbon brushes, attached to the stator,
complete the electric circuit of the DC motor. There are types of DC motors

89

CHAPTER 1. AUTONOMOUS ROBOTS 90

+ O 00
L
\%

Figure 1.13: The equivalent electrical circuit for a DC motor.

that use electromagnets rather than a permanent magnet, and also types that are
brushless. However, a detailed description of such motors are beyond the scope of
this text.

DC motors are controlled by varying the applied voltage. The equations for DC
motors can be divided into an electrical and a mechanical part. The motor can be
modelled electrically by the equivalent circuit shown in Fig. 1.13. Letting V denote the
applied voltage, and w the angular speed of the motor shaft, the electrical equation
takes the form

di | Ri+ Vi, (1.1)
V=IL_

dr

where i is the current flowing through the circuit, L is the inductance of the motor, R
its resistance, and Vuw the voltage (the back EMF) counteracting V. The back EMF
depends on the angular velocity, and can be written as

Vevr = ce, (1.2)

where c. is the electrical constant of the motor. For a DC motor, the generated torque
7, is directly proportional to the current, i.e.

Tg = Cti, (1.3)

where ¢, is the torque constant of the motor. Turning now to the mechanical equation,
Newton’s second law gives

e =, (1.4)

d:

where I is the combined moment of inertia of the motor and its load, and risghe
total torque acting on the motor. For the DC motor, the equation takes the form

dow 90

Te — Tr— T (1%1)

=)

CHAPTER 1. AUTONOMOUS R]OBOIS
dr

91

CHAPTER 1. AUTONOMOUS ROBOTS 92

Figure 1.14: Left panel: A HiTec 645MG servo. The suffix MG indicates that the servo is
equipped with a metal gear train. Right panel: A Parallax servo, which has been modified for
continuous rotation. Servos of this kind are used on the Boe-bot. The circular (left) and star-
shaped (right) white plastic objects are the servo horns.

where zris the frictional torque opposing the motion and z is the (output) torque acting
on the load. The frictional torque can be divided into two parts, the Coulomb friction
(ccsgn(w)) and the viscous friction (c,w). Thus, the equations for the DC motor can
now be summarized as

.- Gy oL di _ ek (1.6)
8 R Rdr R
dw
IE = 7, — ccsgn(w) — cvo — 7, (1.7)

In many cases, the time constant of the electrical circuit is much shorter than that of
the physical motion, so the inductance term can be neglected. Further- more, for
simplicity, the dynamics of the mechanical part can also be neglected under certain
circumstances (e.g. if the moment of inertia of the motor and load is small). Thus,
setting di/dr and dwdr to zero, the steady-state DC mo- tor equations, determining
the torque 7 on the load for a given applied voltage V and a given angular velocity o

C CeCy

= —V - R 1.8
“ T RV TR (1.8)
T = 1, — cesgn(w) — cvw, (1.9)

are obtained. In many cases, the axis of a DC motor rotates too fast and gener- ates
atorque that is too weak for driving a robot. Thus, a gear box is commonly used, which
reduces the rotation speed taken out from the motor (on the sec- ondary drive shaft)
while, at the same time, increasing the torque. For an ideal (loss-free) gear box, the
output torque and rotation speed are givenby

Tout = GT,

92

CHAPTER 1. AUTONOMOUS ROBOTS 93

Figure 1.15: Pulse width modulation control of a servo motor. The lengths of the pulses
determine the requested position angle of the motor output shaft. The interval betwwn pulses
(typically around 20 ms) is denoted T .

1
Wt = o, (1.10)

G
where G is the gear ratio.

Servo motors

A servo motor is essentially a DC motor equipped with control electronics and a gear
train (whose purpose is to increase the torque to the required level for moving the
robot, as described above). The actual motor, the gear train, and the control
electronics, are housed in a plastic container. A servo horn (either plastic or metal)
makes it possible to connect the servo motor to a wheel or some other structure. Fig.
1.14 shows two examples of servo motors.

The angular position of a servo motor's output shaft is determined using a
potentiometer. In a standard servo, the angle is constrained to a given range [aax,
amax], @and the role of the control electronics is to make sure that the servo rotates to a
set position a (given by the user). A servo is fitted with a three-wire cable. One wire
connects the servo to a power source (for exam- ple, a motor controller or, in some
cases, a microcontroller board) andanother wire connects it to ground. The third wire
is responsible for sending signals to the servo motor. In servo motors, a technique
called pulse width modulation

93

CHAPTER 1. AUTONOMOUS ROBOTS 94

Figure 1.16: An arm of a humanoid robot. The allowed rotation range of the elbow is around
100 degrees.

(PWM) is used: Signals in the form of pulses are sent (e.g. from a microcon- troller)
to the control electronics of the servo motor. The duration of the pulses determine the
required position, to which the servo will (attempt to) rotate, as shown in Fig. 1.15. For
a walking robot (or for a humanoid upper body), the limitation to a given angular range
poses no problem: The allowed rotation range of a servo is normally sufficient for, say,
an elbow or a shoulder joint. As an example, an arm of a humanoid robot is shown in
Fig. 1.16. For this particu- lar robot, the rotation range for the elbow joint is around 100
degrees, i.e. easily within the range of a standard servo (around 180 degrees). The
limitation is, of course, not very suitable for motors driving the wheels of a robot.
Fortunately, servo motors can be modified to allow continuous rotation. The Boe-bot
that will be built in the second half of the course uses Parallax continuous rotation
servos (see the right panel of Fig. 1.14), rather than standard servos.

Other motors

There are many different types of motors, in addition to standard DC motors and servo
motors. An example is the stepper motor, which is also a version of the DC motor,
namely one that moves in fixed angular increments, as the name implies. However, in
this course, only standard DC motors and servo motors will be considered.

1.2.4 Processors

Sensors and actuators are necessary for a robot to be able to perceive its envi-
ronment and to move or manipulate the environment in various ways. How-

94

CHAPTER 1. AUTONOMOUS ROBOTS 95

Figure 1.17: A Board of Education (BOE) microcontroller board, with a Basic Stamp Il (BS2)
microcontroller attached. In addition to the microcontroller, the BOE has a serial port for
communication with a PC (used, for example, when uploading a program onto the BS2), as
well as sockets for attaching sensors and electronic circuits. In this case, a simple circuit
involving a single LED, has been built on the BOE. The two black sockets in the upper right
corner are used for connecting up to four servo motors.

ever, in addition to sensors and actuators, there must also be a system for an- alyzing
the sensory information, making decisions concerning what actions to take, and
sending the necessary signals to the actuators.

In autonomous robots, it is common to use several processors to represent the
brain of the robot. Typically, high-level tasks, such as decision-making, are carried out
on a standard PC, for example a laptop computer mounted on the robot, whereas
low-level tasks are carried out by microcontrollers, which will now be introduced briefly.

Microcontrollers
Essentially, a microcontroller is a single-chip computer, containing a central

processing unit (CPU), read-only memory (ROM, for storing programs), random-
access memory (RAM, for temporary storage, such as program variables), and

95

CHAPTER 1. AUTONOMOUS ROBOTS 96

several input-output (I/O) ports. There exist many different microcontrollers, with
varying degrees of complexity, and different price levels, down to a few USD for the
simplest ones. An example is the Basic Stamp II* (BS2) microcon- troller, which costs
around 50 USD.

While the BS2 is sulfficient for the experimental work carried out in this course (in
the next quarter), its speed is only around 4,000 operations per sec- ond (op/s) and it
has a RAM memory (for program variables) of only 32 bytes and a ROM (for program
storage) of 2 kilobytes (Kb).

However, many alternative microcontrollers are available for more advanced robots.
Two examples, with roughly the same price as the BS2, are the BasicX and ZBasic
microcontrollers, which are both compatible with the BOE micro- controller board used
together with the BS2. The BasicX microcontroller has a RAM memory of 400 bytes
and 32 Kb for program storage, whereas ZBasic has 4 Kb of RAM and 62 Kb for
program storage. BasicX executes around 83,000 op/s, whereas (some versions of)
ZBasic can reach up to 2.9 million op/s.

In many cases, microcontrollers are sold together with microcontroller boards (or
microcontroller modules), containing sockets for wires connecting the mi-
crocontroller to sensors and actuators as well as control electronics, power sup- ply

etc. An example is the Board of education (BOE) microcontroller board.

The BOE, shown in Fig. 1.17, is equipped with a solderless breadboard, on which
electronic circuits can be built without any soldering, which is very use- ful for
prototyping.

Since microcontrollers do not have human-friendly interfaces such as akeyboard
and a screen, the normal operating procedure is to write and compile programs on an
ordinary computer (using, of course, a compiler adapted for the microcontroller in
question), and then upload the programs onto the mi- crocontroller. In the case of the
BS2 microcontroller, the language is a version of Basic called PBasic.

Robotic brain architectures

An autonomous robot must be capable of both high-level and low-level pro- cessing.
The low-level processing consists, for example, of sending signals to motor controllers
(see below) which, in turn, send (for example) PWM pulses to servo motors. Another
low-level task is to retrieve raw data (e.g. a voltage value from an IR proximity sensor).
The distinction between low-level and high-level tasks is a bit fuzzy. For example, the
voltage value from an IR sen- sor (e.g. the Sharp GP2D12 mentioned above) can be
mapped to a distance value, which of course normally is more relevant for decision-
making than the raw voltage value. The actual conversion would normally be
considereda low-level task but might as well also be carried out on the robot’s onboard
PC.

4Basic Stamp is a registered trademark of Parallax, inc., see www.parallax.com.

96

http://www.parallax.com/

CHAPTER 1. AUTONOMOUS ROBOTS 97

Laptop computer

lA A A A

: Laser range | Web
Microcontroller : g
finder cameras
A A A A A
Motor Wheel
Sonars
controller encoders
I I
Actuators
(motors)

Figure 1.18: An example of a typical robotic brain architecture, for a differentially steered
two-wheeled robot equipped with wheel encoders, three sonar sensors, one LRF, and two web
cameras.

The hardware configuration providing a robot’s processing capability is re- ferred to
as the robotic brain architecture. An example of a typical robotic brain architecture
is shown in Fig. 1.18. The robotic brain shown in the figure would be used in
connection with a two-wheeled differentially steered robot. As can be seen in the
figure, the microcontroller would handle low-level pro- cessing, such as measuring
the pulse counts of the wheel encoders, collecting readings from the three sonars,
and sending motor signals (e.g. desired set speeds) to the motor controller®, which,
in turn, would send signals to the motors. However, the LRF and the web cameras
would be directly connected, via USB (or, possibly, serial) ports, to the main processor
(on the laptop), since most microcontrollers would not be able to handle the massive
data flow from such sensors.

The main program (i.e. the robotic brain), running on the laptop, would process
the data from the various sensors. For example, the pulse countsfrom

°A separate motor controller (equipped with its own power source) is often used for robotics
applications, since the power source for the microcontroller may not be able to de- liver sufficient
current for driving the motors as well.

97

CHAPTER 1. AUTONOMOUS ROBOTS 98

Microcontroller (Basic Stamp 2)

‘| A A A A A

Servo :
Phototransistors Sonar i
MOtOrs Whiskers

Figure 1.19: An example of a robotic brain architecture for a Boe-bot.

the wheel encoders would be translated to an estimate of position and head- ing, as
described in Chapter 2. Given the processed sensory data, as well as in- formation
stored in the (long-term or short-term) memory of the robotic brain (for example, a
map of the arena in which the robot operates), the main pro- gram would determine
the next action to be carried out by the robot, compute the appropiate motor
commands and send them to the microcontroller.

Note that the figure only shows an example: Many other configurations could be
used as well. For example, there are cameras developed specifically for robotics
applications that, unlike standard web cameras, are able to carry out much of the
relevant image processing (e.g. detecting and extracting faces), and then only sending
thatinformation (rather than the raw pixel values) to the laptop computer.

The robotic brain architecture shown in Fig. 1.18 would be appropriate for a rather
complex (and costly!) robot. Such robots are beyond the scope of the experimental
work carried out in the second half of this course. The ex- perimental work, which will
be carried out using a Boe-bot (see the left panel of Fig. 1.1), involves a much simpler
robotic brain architecture, illustrated in Fig. 1.19. As can be seen, in this case, the
robot has a single processor, namely the BS2 microcontroller, which thus is
responsible both for the low-level (sig- nal) processing and the high-level decision-
making.

The microcontroller sends signals to the two servo motors and receives in- put
from the sensors attached to the robot, for example, two photo-resistors, a sonar
sensor, and whiskers. The whiskers are simple touch sensors that give a reading of
either 0 (if no object is touched) or 1 (if the whisker touches an object). Of course,
other sensors (such as IR sensors or simple wheel encoders) can be added as well,
but one should keep in mind that the processing capabil- ity of the BS2 is very limited.
Note that no motor controller is used: The BOE is capable of generating sufficient
current for up to four Parallax servo motors.

98

CHAPTER 2. KINEMATICS AND DYNAMICS

99

99

4. Methodology

87

~Simulation efautornromousrobots

Simulations play an important role in research on (and development of) auto- nomous
robots, for several reasons. First of all, testing a robot in a simulated environment can
make it possible to detect whether or not the robot is prone to catastrophic failure in
certain situations, so that the behavior of the robot can be altered before it is
unleashed in the real world. Second, building a robot is often costly (for example,
most laser range finders cost several thousand USD). Thus, through simulations, it is
possible to test several designs before constructing an actual robot. Furthermore, it is
common to use stochastic opti- mization methods, such as evolutionary algorithms, in
connection with the de- velopment of autonomous robots. Such methods require that
many different robotic brains be evaluated, which is very time-consuming if the work
must be carried out in an actual robot. Thus, in such cases, simulations are often
used, even though the resulting robotic brains must, of course, be thoroughly tested
in real robots, a procedure which often requires several iterations involving simulated
and actual robots. In this chapter, an introduction to some of the general issues
pertaining to robotic simulations will be given, along with a brief description of (some
of) the features of two particular simulators for mo- bile robots, namely GPRSim and
ARSim. GPRSim is an advanced 3D simulator for automomous robots, which is used
in certain research projects within the Adaptive systems group. ARSim is a simplified
(2D) Matlab simulator used in this course.

3.1 Simulators

Over the years, several different simulators for mobile robots have appeared, with
varying degrees of complexity. One of the most ambitious simulators to date is
Robotics studio from Microsoft, which allows the user to simulate many of the
commercially available mobile robots, or even to assemble a (vir-

29

100

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10

tual) robot using generic parts.

Some simulators include not only general simulation of the kinematic and
dynamics of robots, but also procedures for stochastic optimization. Some ex- amples
of such simulators are wWebots, which is manufactured by Cyberbotics
(www.cyberbotics.com) and the open source package Darwin2K, which can be
found at darwin2k.sourceforge.net.

The Adaptive systems research group at Chalmers has developed a simu- lator
called the General-purpose robotic simulator (GPRSim), which is exten- sively used
in our research projects. Unlike the other simulators mentioned above, GPRSIim
features, as an integral part of the simulator, an implementa- tion of the general-
purpose robotic brain structure (GPRBS) (also developed in the Adaptive systems
research group). The GPRBS, in turn, consists of a standardized representation of a
robotic brain, consisting of a set of so called brain processes as well as a decision-
making system. This structure allows re- searchers to build complex robotic brains
involving many different behavioral aspects and also to export the resulting robotic
brain for use in real (physical) robots. The existence of a standardized representation
for robotic brains also makes it possible, for example, to reuse parts of a previously
developed robotic brain in other applications than the original one.

However, GPRSIm is primarily a research tool and, as such, it is not very user-
friendly. Moreover, the underlying code is quite complex. Thus, in this course, a
different simulator will be used, namely the Autonomous robot sim- ulator (ARSim),
which is a 2D simulator written in Matlab. This simulator is generally too slow to be
useful in research projects, but it is perfectly suited to most of the tasks considered in
this course. Note also that, even though ARSIim is greatly simplified, many parts of the
code (for example the simulation of DC motors, IR sensors etc.) are essentially the
same in GPRSim and ARSIim

3.2 General simulation issues

In Fig. 3.1, the general flow of a single-robot simulation is shown. Basically, after
initialization, the simulation proceeds in a stepwise fashion. In each step, the simulator
reads the sensors of the robot, and the resulting signals are sent to the robotic brain,
which computes appropriate motor signals that, finally, are sent to the motors. Given
the motor signals, the acceleration of the robot can be updated, and new velocities
and positions can be computed. Changes to the arena (if any) are then made, and the
termination criteria are checked.

3.2.1 Timing of events

As mentioned earlier, simulation results in robotics must be validated in an actual
robot. However, in order for this to be possible, some care must be

101

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10:

\ 4

Initialize 'y 1. Obtain sensor readings

v

2. Process information

v

3. Compute motor signals

v

4. Move robot

v

5. Update arena

v

6. Check termination criteria

Figure 3.1: The flow of a single-robot simulation. Steps 1 through 6 are carried out in each
time step of the simulation.

taken, particularly regarding steps 1-3. To be specific, one must make sure that these
steps can be executed (on the real robot) in a time which does not exceed the time
step length in the simulation. Here, it is important to distinguish between two different
types of events, namely (1) those events that take a long time to complete in simulation,
but would take a very short time in a real robot, and (2) those events that are carried
out rapidly in simulation, but would take a long time to complete in a real robot.

An example of an event of type (1) is collision-checking. If performed in a
straight-forward, brute-force way, the possibility of a collision between the (circular,
say) body of the robot and an object must be checked by going through all lines in a
2D-projection of the arena. A better way (used, for ex- ample, in GPRSim) is to
introduce an invisible grid, and only check for colli- sions between the robot and those
objects that (partially) cover the grid cells that are also covered by the robot. However,
even when such a procedure is used, collision-checking may nevertheless be very
time-consuming in simula- tion whereas, in a real robot, it amounts simply to reading a
bumper sensor (or, as on the Boe-bot, a whisker), and transferring the signal (which, in
this case, is binary, i.e. a single bit of information) from the sensor to the brain of the
robot. Events of this type cause no (timing) problems at the stage of transferring the
results to a real robot, even though they may slow down the simulation con- siderably.

An example of an event of type (2) is the reading of sensors. For exam- ple, an IR
sensor can be modelled using simple ray-tracing (see below) and, provided that the
number of rays used is not too large, the update can be car-

102

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10.

Process information, Transfer motor
A compute motor output signals

Read Read
first IR second IR
sensor cansnr

A
A\

Ot

Figure 3.2: A timing diagram. The boxes indicate the time required to complete the corre-
sponding event in hardware, i.e. a real robot. In order for the simulation to be realistic, the
time step At used in the simulation must be longer than the total duration (in hardware) of all
events taking place within a time step.

ried out in a matter of microseconds in a simulator. However, in a real robot it might
take longer time. While the reading of an IR sensor involves a very limited signal flow
compared to the reading of a camera with, say, 640 480 pixels, the transfer gf the
reading from the sensor to the robotic brain is a po- tential bottleneck. A common
setup is to have a microcontroller (see Chapter

1) handling the low-level communication, i.e. obtaining sensor readings and sending
signals to actuators, and a PC (for example, a laptop placed on the robot) handling
high-level issues, such as decision-making, motion planning etc. Very often, the
communication between the laptop and the microcontroller takes place through a serial
port, operating with a speed of, say, 9600 or 38400 bits/s. If the onboard PC must
read, for example, four proximity sensors (as- suming one byte per reading) and send
signals to two motors (again assuming that each signal requires one byte), a total of
6 8 = 48 bits is needed, lim- iting the number of interactions between the PC and the
microcontroller to 960048 = 200 per second in the,case of a serial port speed of
9600 bits/s. As another, more specific, example, consider the small mobile robot
Khepera, shown in the left panel of Fig. 1.5. Inits standard configuration, it is equipped
with eight IR sensors, which are read in a sequential way every 2.5 ms, so that the
processor of the robot receives an update of a given IR sensor’s reading every 20 ms.
The updating frequency of the sensors is therefore limited to 50 Hz. Thus, a simulation
of a Khepera robot in which the simulated sensors are updated with a frequency of,
say, 100 Hz would be unrealistic.

In practice, the problem of limited updating frequency in sensors can be solved by
introducing a Boolean readability state for each (simulated) sensor. Thus, in the case
of a Khepera simulation with a time step of 0.01s, the sensor values would be updated
only every other time step. Step 2, i.e. the processing of information by the brain of the
robot, must also, in a realistic simulation, be of limited complexity so that the three
steps (1, 2, and 3) fogether can be carried

103

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10+

out within the duration At (the simulation time step) when transferred to the real robot.
An example of a timing diagram for a generic robot (not Khepera) is shown in Fig. 3.2.
In the case shown in the figure, two IR proximity sensors are read, the information is
processed (for example, by being passed through an artificial neural network), and
the motor signals (voltages, in the case of standard DC motors) are then transferred
to the motors. The figure shows a case which could be realistically simulated, with the
given time step length

At. However, if two additional IR sensors were to be added, the simulation would
become unrealistic: The real robot would not be able to complete all steps during the
time Ar.

For the simple robotic brains considered in this course, step 2 would gener- ally be
carried out almost instantaneously (compared to step 1) in a real robot. Similarly, the
transfer of motor signals to a DC motor is normally very rapid (note, however, that the
dynamics of the motors may be such that it is pointless to send commands with a
frequency exceeding a certain threshold).

To summarize, a sequence of events that takes, say, several seconds per time
step to complete in simulation (e.g. the case of collision-checking in a very complex
arena) may be perfectly simple to transfer to a real robot, whereas a sequence of
events (such as the reading of a large set of IR sensors) that can be completed almost
instantaneously in a simulated robot, may simply not be transferable to a real robot,
unless a dedicated processor for signal processing and signal transfer is used.

3.2.2 Noise

Another aspect that should be considered in simulations is noise. Real sensors and
actuators are invariably noisy, on several levels. Furthermore, even sen- sors that are
supposed to be identical often show very different characteristics in practice. In
addition, regardless of the noise level of a particular sensor, the frequency with which
readings can be updated is limited, thus introducing another source of noise, in certain
cases. For example, the limited sampling frequency of wheel encoders implies that,
even in the (unrealistic) case where the kinematic model is perfect and there are no
other sources of noise, the in- tegrals in the kinematic equations (Egs. (2.7)-(2.9)) can
only be approximately computed.

Thus, in any realistic robot simulation, noise must be added, at all relevant levels.
Noise can be added in several different ways. A common method (used in GPRSIm
and ARSIim) is to take the original reading S of a sensor and add noise to form the

actual reading S as

S =SN(1, o), (3.1)

where N(1, o) denotes the normal (Gaussian) distribution with mean 1 and

104

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10!

standard deviation ¢. Of course, other distributions (e.g. a uniform distribu- tion) can
be used as well.

An alternative method is to take some measurements of a real sensor and store
the readings in a lookup table, which is then used by the simulated robot. For example,
in the case of an IR sensor with a range of, say, 0.5 m, one may, for example, take 10
readings each at distances of 0.05, 0.10, . .., 0.50 m, and store those readings in a
matrix. In the simulator, when the IR sensor is used, the distance L to the nearest
obstacle is determined, and the reading is then obtained by interpolating linearly
between two samples from the lookup table. For example, if L = 0.23 m, a randomly
chosen sample s» is taken from the 10 readings stored for L = 0.20 m, and another
randomly chosen sample s is taken from the readings stored for L = 0.25 m. The
reading of the simulated sensor is then taken as

A

S—3 0.23 — 0.20,, _
+ O (3.2)

0 025-020 %

This method has the advantage of forming simulated readings from actual sensor
readings, rather than introducing a model for the noise. Furthermore, using lookup
tables, it is straightforward to account for the individual nature of supposedly identical
sensors. However, a clear disadvantage is the need for generating the lookup tables,
which often must contain a very large number of samples taken not only at various
distances, but also, perhaps, at various angles between the forward direction of the
sensor and the surface of the obstacle. Thus, the first method, using a specific noise
distribution, is normally used instead.

3.2.3 Sensing

In addition to correct timing of events and the addition of noise in sensors and
actuators, it is necessary to make sure that the sensory signals received by the
simulated robot do not contain more information than could be provided by the
sensors of the corresponding real robot. For example, in the simulation of a robot
equipped only with wheel encoders (for odometry), it is not allowed to provide the
simulated robot with continuously updated and error-free po- sition measurements.
Instead, the simulated wheel encoders, including noise and other inaccuracies, should
be the only source of information regarding the position of the simulated robot.

In both GPRSim and ARSim, several different sensors have been imple- mented,
namely (1) wheel encoders, (2) IR proximity sensors, and (3) com- passes. In
addition, GPRSim (but not ARSim) also features (4) sonar sensors and (5) laser range
finders (LRFs). An important subclass of (simulated) sen- sors are ray-based
sensors, which use a simple form of ray tracing in order to

105

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10t

form their reading(s). Examples of ray-based sensors are IR proximity sensors, sonar
sensors, and laser range finders.

Now, the different natures of, say, an IR sensor, which gives a fuzzy read- ing
based on infrared light, and an LRF, which gives very accurate readings (in many
directions) based on laser light, imply that slightly different procedures must be used
when forming the (simulated) sensor readings of those twosen- sor types. However,
in both cases, the simulation of the sensor requires ray tracing, which will now be
considered.

Ray-based sensors In ray-based sensors, the formation of sensor readings is
based on the concept of sensor rays. Basically, a number of rays are sent out from
a sensor, in various directions (depending on the opening angle of the sensor), and
the distance to the nearest obstacle is determined. If no ob- stacle is available within
the range of the sensor, the ray in question provides no reading. Of course, in order
to obtain any ray reading, not only the robot must be available, but also the objects
(e.g. walls and furniture) located in the arena in which the robot is operating. In
GPRSIim, objects are built from boxes and cylinders. Boxes are represented as a
sequence of six planes, whereas (the mantle surface of) cylinders are represented by
a sufficient number of planes (usually around 10-20) to approximate the circular cross
section of the cylinder. The ray readings are thus obtained using general equations
for line- plane intersections'. Here, however, we shall only consider the simpler two-
dimensional case, in which all surfaces are vertical and where the sensors are
oriented such that all emitted rays are parallel to the ground. In such cases, the arena
objects can be represented simply as a sequence of lines in two dimen- sions. Indeed,
this is how objects are represented in ARSIim.

An example of such a configuration is shown in Fig. 3.3. The left panel shows a
screenshot from GPRSim, in which an LRF mounted on top of a robot takes a reading
in an arena containing only walls. The right panel shows a two- dimensional
representation of the arena and the LRF (the body of the robot is not shown). Given
the exact position of a ray’s starting point, as well as the range of the corresponding
sensor, it is possible to determine the distance be- tween the ray and the nearest
obstacle using general equations for line-line intersection, which will be described
next. However, it should first be noted that, even though the simulator of course uses
the exact position of the robot and its sensors in order to compute sensor readings,
the robot (or, more specif- ically, its brain) is only provided with information regarding
the actual sensor readings.

Consider now a single sensor ray. Given the start and end points of the

In order to speed up the simulator, a grid (also used in collision checking) is used, such that only
those obstacles that are (partially) located in the grid cells currently covered by the sensor are
considered.

106

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10

Figure 3.3: Left panel: A screenshot from GPRSim, showing an LRF taking a reading in an
arena containing only walls. Right panel: A two-dimensional representation of the sensor
reading. The dotted ray points in the forward direction of the robot which, in this case, coincides
with the forward direction of the LRF.

ray, its equation can be determined. Let (x. y.) denote the start point for the ray (which
will be equal to the position of the sensor, if the size of the latter can be neglected).
Once the absolute direction (8;) of the sensor ray has been determined, the end point
(x,,) of an unobstructed ray (i.e. one that does not hit any obstacle) can be obtained

as
(xv, y») = (x. + D cos B, y. + D sin j3), (3.3)

where D denotes the sensor range. Similarly, any line corresponding to the side of an
arena object can be defined using the coordinates of its start and end points. Note
that, in Fig. 3.3, all lines defining arena objects coincide with coordinate axes, but this
is, of course, not always the case. Now, in the case of two lines of infinite length,
defined by the equations yr = ¢ + dwx, k = 1, 2, it is trivial to find the intersection
point (if any) simply by setting y: = y.. However, here we are dealing with line segments
of finite length. In this case, the intersection point can be determined as follows:
Letting P* = (x, y*) and

P’ = (x, y") , denote the start and end points, respectively, of line i, i = 1, 2,

i i i

the equations for an arbitrary point P; along the two line segments can be

written . z
P=P+r P-P, (3.4)
1 1 1
and
R >
P, = P62+ u sz— P"‘Z, (3.5)

107

C%ﬁJrEF&?’u)SMULﬁTQN.FP& tﬁyg%@M%g iqut-'é%d u gives, after some 10t

108

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 10!

algebra,
L= =0 = ¥ — 05—) - x) (3.6)
0P = ¥ = x) = (2 = ¥ —)
and ? 2! : ’ 2 :
L= @= 00— ¥y = 0=)G - x) (3.7)
%ﬁ =0 = ¥) = G = xIO° —

An intersection occurs if both t and u are in the range [0, 1]. Assuming that the first
line (with points given by P.) is the sensor ray, the distance d between the sensor and
the obstacle, along the ray in question, can then easily be formed by simply
determining P. using the 7 value found, and computing

d= P, — P| = |«(P° — P)|. (3.8)

If the two lines happen to be parallel, the denominator becomes equal to zero?. Thus,
this case must be handled separately.

In simulations, for any time step during which the readings of a particular sensor
are to be obtained, the first step is to determine the origin of the sensor rays (i.e. the
position of the sensor), as well as their directions. An example is shown in Fig. 3.4.
Here, a sensor is placed at a point p;, relative to the center of the robot. The absolute
position P (relative to an external, fixed coordinate system) is given by

P.=X +p, (3.9)

where X = (X, Y) is the position of the (center of mass of the) robot. Assuming that the
front direction of the sensor is at an angle « relative to the direction of heading (¢) of
the robot, and that the sensor readings are to be formed using N equally spaced rays
over an opening angle of y, the absolute direction g; of the i" ray equals

Bi=¢+a— 2+(i— 1)0y, (3.10)
where dy is given by Y
Y
oy = —. 3.11
7= (3.11)
1

Now, the use of the ray readings differs between different simulated sensors. Let us
first consider a simulated IR sensor. Here, the set of sensor rays is used only as an
artificial construct needed when forming the rather fuzzy reading of such a sensor. In
this case, the rays themselves are merely a convenient com- putational tool. Thus, for
IR sensors, the robotic brain is not given information regarding the individual rays.
Instead, only the complete reading S'is pri)— vided, and it is given by

N

g1
> (3.12)

109

CWZ&%&@&WEQ&U%‘N&? ﬁ%HWQMQMQH%ﬁQﬁQI{% the numerators and the [l

denominators are equal to zero in the equations for t and u.

110

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 11

Figure 3.4: The right panel shows a robot equipped with two IR sensors, and the left panel
shows a blow-up of the left sensor. In this case, the number of rays (N) was equal to 5. The
leftmost and rightmost rays, which also indicate the opening angle y of the IR sensor are shown
as solid lines, whereas the three intermediate rays are shown as dotted lines.

where p; is the ray reading of ray i. |deally, the value of N should be very large for the
simulated sensor to represent accurately a real IR sensor. However, in practice, rather
small values of N (3-5, say) is used in simulation, so that the reading can be obtained
quickly. The loss of accuracy is rarely important, since the (fuzzy) reading of an IR
sensor is normally used only for proximity detec- tion (rather than, say, mapping or
localization). An illustration of a simulated IR sensor is given in Fig. 3.4.
A common phenomenological model for IR sensor readings (used in GPRSim and

ARSim) defines p; as s s

p =min a.,. cosx,1 , (3.13)
d
i 2 2 i

i

where ¢ and ¢; are non-negative constants, d; > o is the distance to the nearest object
along ray i, and

Ki=—yp + (i— 1)oy, (3.14)

is the relative ray angle of ray i. If d; > D (the range of the sensor), p; = 0. Note that
it is assumed that x; [=2, n2], i.e. the opening angle cannot exceed = radians.
Typical opening angles are =2 or fess. It should also be noted that this IR sensor
model has limitations; for example, the model does not take into account the
orientation of the obstacle’s surface (relative to the direction of the sensor rays) and
neither does it account for the different IR reflectivity of different materials.

For simulated sonar sensors (which are included in GPRSim but not in AR- Sim),
the rays are also only used as a convenient computational tool, but the

111

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 11.

final reading S is formed in a different way. Typically, sonar sensors give rather accurate
distance measurements in the range [Dui,, Dxa], but sometimes fail to give a reading
at all. Thus, in GPRSim, the reading of a sonar sensor is formed as S = min;d; with
probability p and D... (no detection) with proba- bility 1 p. Also, if § < D.. the reading
is set to D... Typically, the value of p is very close to 1. The number of rays (V) is
usually around 3 for simulated sonars.

A simulated LRF, by contrast, gives a vector-valued reading, S, where each
component S; is obtained simply as the distance d; to the nearest obstacle along the
ray. Thus, for LRFs, the sensor rays have a specific physicalinterpretation, made
possible by the fact that the laser beam emitted by an LRF is very narrow. In GPRSim,
if di > D, the corresponding laser ray reading is set to -1, to indi- cate the absence of
any obstacle within range of the ray in question. Note that LRFs are only implemented
in GPRSim. It would not be difficult to add such a sensor to ARSim, but since an LRF
typically takes readings in 1,000 different directions (thus requiring the same number
of rays), such sensors would make ARSIim run very slowly.

As a final remark regarding ray-based sensors, it should be noted that a given
sensor ray i may intersect several arena object lines (see, for example, Fig. 3.3) In
such cases, d; is taken as the shortest distance obtained for the ray.

3.2.4 Actuators

A commonly used actuator in mobile robots is the DC motor. The equations describing
such motors are given in Chapter 1.

In both GPRSim and ARSim, a standard DC motor has been implemented. In this
motor, the input signal is the applied voltage. Both the electrical and mechanical
dynamics of the motors are neglected. Thus the torque acting on the motor shaft
axis is given by Egs. (1.8) and (1.9). Gears are imple- mented in both simulators, so
that the torques acting on the wheels are given by Egs. (1.10). However, the
simulators also include the possibility of setting a maximum torque .. which cannot
be exceeded, regardless of the output torque .. obtained from Egs. (1.10).

In addition, GPRSim (but not ARSim) also allows simulation of velocity-
regulated motors. Unlike the voltage signal used in the standard DC motor, a
velocity-regulated motor takes as input a desired reference speed v.: for the wheel
attached to the motor axis. The robot then tries to reach this speed value, using
proportional control. The actual output torque of a velocity-regulated motor is given
by

T =K Vet — V) (3.15)

In this model, a change in v.: generates an immediate change in the torque. In a real
motor, the torques cannot change instantaneously. However, Eq. (3.15)

112

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 11

Figure 3.5: Left panel: A simulated robot (from GPRSim), consisting of more than 100 objects.
Right panel: An example (in blue) of a collision geometry.

usually provides a sufficiently accurate estimate of the torque. As in the case of the
standard DC motor, there is also a maximum torque ... for velocity- regulated motors.

Note that, if velocity-regulated motors are to be used, the robot must be equipped
with wheel encoders to allow the computation of odometric esti- mates of the wheel
speeds.

3.2.5 Collision checking

A real robot should normally be very careful not to collide with an obstacle (or, worse, a
person). In simulations, however, one may allow collisions, for exam- ple during
simulations involving stochastic optimization, where the robotic brains in the early
stages of an optimization run may be unable to avoid colli- sions. In any case,
collisions should, of course, be detected.

In GPRSIim the concept of a collision geometry is used when checking for
collisions. The collision geometry is a set of vertical planes in which the body of the
robot should be contained. It would be possible to check collisions be- tween the
boxes and cylinders constituting the (simulated) body of the robot. However, it is
common that the robotic body consists of a very large number of objects, making
collision-checking very slow indeed. Thus, instead, a sim- pler collision geometry is
used. An example is given in Fig. 3.5. The left panel shows a simulated robot
(consisting of more than 100 separate objects), and the right panel shows (in blue) a
collision geometry for the same robot.

By contrast, in ARSim the simulated robot is always represented as a circu- lar
disc. Thus, the collision detection method simply checks for intersections

113

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 11

between the circular body of the robot and any line representing a side of an arena
object.

3.2.6 Motion

Once the torques acting on the wheels have been generated, the motion of the robot
is obtained through numerical integration of Egs. (2.31) and (2.32). In both GPRSim
and ARSim, the integration is carried out using simple first-
order (Euler) integration. For each time step, V and ¢ are computed using
Egs. (2.31) and (2.32), respectively. The new values V/ and ¢/ of V and ¢ are then
computed as i

VIi=Vv+ VA, (3.16)

& = ¢+ pAL, (3.17)

where At is the time step length (typically set to 0.01 s). The value of ¢ is then updated,
using the equation

¢ = ¢+ dA (3.18)
The cartesian components of the velocity are then obtained as

VI =VJicosd, (3.19)

VyJ = VJsin ¢. (3.20)

Finally, given v/ and v/, the new positions X’ and ¥/ can be computed as
X =X+ VA, (3.21)

Y/ =Y + V/At (3.22)

In addition, if wheel encoders are used, both GPRSim and ARSim also keep track of
the rotation of each wheel, for possible use in odometry (if available).

3.2.7 Robotic brain

While the physical components of a robot, such as its sensors and motors, of- ten
remain unchanged between simulations, the robotic brain must, of course, be adapted
to the task at hand. Robotic brains can be implemented in many different ways.

In behavior-based robotics (BBR) the brain of a robot is built from a reper- toire
(i.e. a set) of basic behaviors, as well as a decision-making procedure, selecting which
behavior(s) to activate at any given time. In the General- purpose robotic brain
structure (GPRBS), developed in the author’s research group, the robotic brain is
built from a set of brain processes, some of which

114

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 11!

are motor behaviors (that make use of the robot’s motors) and some of which are
cognitive processes, i.e. processes that do not make use of any motors. In addition,
GPRBS features a decision-making system based on the concept of utility. One of the
main properties of GPRBS is that this structure allows sev- eral processes to run in
parallel, making it possible to build complex robotic brains. In fact, the specific aim of
the development of GPRBS is to move be- yond the often very simple robotic brains
defined within standard BBR.

In GPRBS, all brain processes are specified in a standardized format, which
simplifies the development of new brain processes, since many parts of an already
existent process often can be used when writing a new process. How- ever, at the
same time, GPRBS (as implemented in GPRSIim) is a bit complex to use, especially
since it is intended for use in research, rather than as an edu- cational tool. Thus, in
this course, ARSIim will be used instead. This simulator allows the user to write simple
brain processes (as well as a basic decision- making system) in any desired format
(i.e. without using GPRBS). Methods for writing brain processes will be described
further in a later chapter.

3.3 Brief introduction to ARSIim

The simplest way to acquaint oneself with ARS imis to run and analyze the test program
distributed with the program. In order to do so, start Matlab, move to the right directory
and write

>> TestRunRobot

and press return. The robot appears in a quadratic arena with four walls and two
obstacles, as shown in Fig. 3.6. The robot is shown as a circle, and its di- rection of
motion is indicated by a thin line. The IR sensors (of which there are two in the default
simulation) are shown as smaller circles. The rays used for determining the sensor
readings (three per sensor, per default) are shown as lines emanating from the
sensors. In the default simulation, the robot executes 1,000 time steps of length 0.01
s, unless it is interrupted by a collision with an obstacle or a wall.

The flow of the simulation basically follows the structure given in Fig. 3.1. The first
lines of code in the TestRunRobot .mfile are devoted to adding the various ARSim
function libraries to Matlab’s search path. The arena objects are then created and
added to the arena. Next, the brain of the robot is created (by a callto CreateBrain),
and the setup is completed by creating the sensors and motors, and adding them to
the robot.

Before the actual simulation starts, the robot’s position, heading, velocity, and
angular speed are set, and the plot of the arena (including the robot) is created.
Optionally, a variable motionResults, storing information about

115

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 11t

Figure 3.6: Atypical screenshot from an ARSim simulation. The black lines emanating from
the two IR proximity sensors of the robot are the rays used for determining sensor readings.

the robot’s motion, can be created.

ARSim then executes the actual simulation. Each time step begins with the
sensors being read. First, the readings of all ray-based sensors (a category in which
only IR sensors have been implemented in ARSim, so far) are obtained. Next, the
odometer and compass readings are obtained (provided, of course, that the robot is
equipped with those sensors. Next, the robotic brain processes the sensory
information (by executing the BrainStep function), producing motor signals, which
are used by the MoveRobot function. Finally, a collision check is carried out.

In normal usage, only a few of ARSim’s functions need be modified, namely
CreateBrain, in which the parameters of the brain are set, BrainStep, which
determines the processing carried out by the robotic brain, and, of course, the main file
(i.e. TestRunRobot in the default simulation), where the setup of the arena and the
robot are carried out. Normally, no other Matlab func- tions should be modified unless,
for example, one wants to modify the plot procedure.

Note that, by default, the rays involved in the computation of the IR sensor readings
are not plotted. In order to plot the sensor rays, one must set the pa- rameter
ShowSensorRaysto true. If the robot is equipped with an odome- ter, one can plot
also the position and heading estimated by the odometer, by setting the parameter
ShowOdometricGhost totrue. A brief description of the Matlab functions contained
in ARSimis given in Appendix A.

116

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS

11

117

CHAPTER 4. ANIMAL BEHAVIOR

11

118

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

11¢

119

~EXxplorationnravtgation,and-tocalization

In the previous chapter, the concept of robotic behaviors was introduced and
exemplified by means of some basic motor behaviors. Albeit very simple, such
behaviors can be tailored to solve a variety of tasks such as, for example, wan- dering,
wall following and various forms of obstacle avoidance. However, there are also clear
limitations. In this chapter, some more advanced motor behaviors will be studied. First,
behaviors for exploration and navigation will be considered. Both of these two types
of behavior require accurate pose esti- mates for the robot. It is assumed that the robot
is equipped with a (cognitive) Odometry brain process, providing continuous pose
(and velocity) estimates. As mentioned earlier, such estimates are subject to
odometric drift, and there- fore an independent method for localization (i.e. odometric
recalibration) is always required in realistic applications. Such a method will be
studied in the final section of this chapter. However, exploration and navigation are im-
portant problems in their own right and, in order to first concentrate on those problems,
it will thus (unrealistically) be assumed, in the first two sections of the chapter, that
the robot obtains perfect, noise-free pose estimates using odometry only.

6.1 Exploration

Purposeful navigation requires some form of map of the robot’s environment. In many
cases, however, no map is available a priori. Instead, it is the robot’s task to acquire
the map, in a process known as simultaneous localization and mapping (SLAM).
In (autonomous) SLAM, a robot is released in an unknown arena, and it is then
supposed to move in such a way that, during its motion, its long-range sensors
(typically an LRF) covers every part of the arena, so that

67

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12

the sensor readings can be used for generating a map. This is a rather diffi- cult task
since, during exploration and mapping, the robot must keep track of its position using,
for odometric recalibration, the (incomplete, but grow- ing) map that it is currently
generating. SLAM is an active research topic, for which many different methods have
been suggested. A currently popular ap- proach is probabilistic robotics, in which
the robot maintains a probability density function from which its position is inferred.
However, SLAM is be- yond the scope of this text. Instead, the simpler, but still
challenging, topic of exploration given perfect positioning (as mentioned in the
introduction to this chapter) will be considered.

Exploration can be carried out for different reasons. In some applications, such as

lawn mowing, vacuum cleaning, clearing mine fields etc., the robot must physically
cover as much as possible of the floor or ground in its envi- ronment. Thus, the robot
must carry out area coverage. In some applications,
e.g. vacuum cleaning, it is often sufficient that the robot carries out a more or less
aimless wandering that, eventually, will make it cover the entire floor. In other
applications, such as mapping, it is unnecessary for the robot to physi- cally visit every
spot in the arena. Instead, what matters is that its long-range sensor, typically an LRF
(or a camera), is able to sense every place in the arena at some point during the
robot’s motion. The problem of exploring an arena such that the long-range sensor(s)
reach all points in the arena will here be referred to as sensory area coverage.

Exploring an arena, without any prior knowledge regarding its structure, is far from
trivial. However, a motor behavior (in the GPRBS framework) for sensory area
coverage has recently (2009) been implemented'. This Exploration behavior has been
used both in the simulator GPRSim and in a real robot (as a part of SLAM). In both
cases, the robot is assumed to be equipped with an LRF. The algorithm operates as
follows: A node is placed at the current (esti- mated) position of the robot. Next, the
robot generates a set of nodes at a given distance (D) from its current position
(estimated using the Odometry process). Before any nodes are placed, the robot used
the LRF (with an opening (sweep) angle «) to find feasible angular intervals for node
placement, i.e. angular in- tervals in which the distance to the nearest obstacle
exceeds D + A, where A is a parameter measuring the margin between a node and
the nearest obsta- cle behind the node. The exact details of the node placement
procedure will not be given here. Suffice it to say that, in order to be feasible, an
angular in- terval must have a width y exceeding a lower limit y... in order for a node
to be placed (at the center of the angular interval). Furthermore, if the width of a
feasible angular interval is sufficiently large, more than one node may be placed in
the interval. An illustration of feasible angular intervals and node

1See Wahde, M. and Sandberg, D. An algorithm for sensory area coverage by mobile robots oper-
ating in complex arenas, Proc. of AMIRE 2009, pp. 179-186, 2009.

121

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12

Figure 6.1: An illustration of the node placement method in the Exploration behavior. The
left panel shows the distances obtained over the 180 degree opening angle of the LRF (note
that individual rays are not shown). The inner semi-circle has a radius of D (the node
placement distance) whereas the radius of the outer semi-circle is D + A. The right panel
shows the re- sulting distribution of nodes. Note that one of the two feasible angular intervals
is sufficiently wide to allow two nodes to be placed.

placement is given in Fig. 6.1.
At this point, the reader may ask why nodes are placed at a distance D

from the current node, rather than as far away as possible (minus the margin

A). The reason is that, in practical use, one cannot (as is done here) assume that the
odometry provides perfect pose estimates. Since the Exploration behavior is normally
used in connection with SLAM, for which accurate positioning is crucial when building
the map (a process involving alignment of consecutive laser scans), one cannot move
a very large distance between consecutive laser snapshots. Thus, even though the
typical range R of an LRF is around 4-10 m or more, the distance D is typically only
around 1 m.

An additional constraint on node placement regards the separation (con- cerning
distances, not angles) between nodes. A minimum distance of d (typ- ically set to 0.75
m or so) is enforced. The requirement that nodes should be separated by a distance
of at least d makes the algorithm finite: At some point, it will no longer be possible to
place new nodes without violating this con- straint. Thus, when all nodes have been
processed (i.e. either having beenvis- ited or deemed unreachable, see below), and
no further nodes can be added, the exploration of the arena is complete.

Returning to the algorithm, note that the initial node, from which the robot starts its
exploration, is given the status completed (implying that this node has been reached)
and is referred to as the active node. All newly generated nodes are given the status
pending. The robot also generates paths to the pending

122

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12,

Figure 6.2: The early stages of a run using the exploration algorithm, showing a robot ex-
ploring a single rectangular room without a door. The arena contains a single, low obstacle,
which cannot be detected using the LRF (since it is mounted above the highest point of the
obstacle). In each panel, the target node is shown with two thick circles, pending nodes are
shown as a single thick circle, completed nodes as a filled disc, and unreachable nodes as a filled
square. Upper left panel: The robot, whose size is indicated by a thin open circle, starts at
node 1, generating three new pending nodes (2, 3, and 4). Upper right panel: Having reached
node 4, the robot sets the status of that node to completed, and then generates new pending
nodes. Lower left panel: Here, the robot has concluded (based on IR proximity readings) that
node 6 is unreachable, and it therefore selects the nearest pending node (5, in this case) based
on path distance, as the new target node. Lower right panel: Having reached node 5, due to
the minimum distance requirement (between nodes) the robot can only generate one new
node (7). It rotates to face that node, and then moves towards it etc.

nodes. For example, if the robot is located at node 1 and generates three pend- ing
nodes (2,3 and 4), the paths will be (1, 2), (1, 3) and (1, 4). The robot next selects the
nearest node, based on the path length as the target node. In many cases (e.g. when
more than one node can be placed), several nodes are at the same (estimated)
distance from the robot. In such cases, the robot (arbitrarily)

123

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12

selects one of those nodes as the target node. For the paths just described, the path
length equals the cartesian distance between the nodes. If a path con- tains more
than two elements, however, the path length will differ from the cartesian distance,
unless all the nodes in the path lie along a straight line. The path length is more
relevant since, when executing the exploration algorithm described here, the robot
will generally follow the path, even though direct movement between the active node
and a target node is also possible under certain circumstances; see below.

Next, the robot rotates to face the target node, and then proceeds towards it; see
the upper left panel of Fig. 6.2. During the motion, one of two things can happen:
Either (i) the robot reaches the target node or, (ii) using the output from a Proximity
detection brain process (assumed available), it concludes that the target node cannot
be reached along the current path. Note that, in order for the Proximity detection brain
process to be useful, the sensors it uses should be mounted at a different (smaller)
height compared to the LRF.

In case (i), illustrated in the upper right panel of Fig. 6.2, once the target node has
been reached, it is given the status completed and is then set as the new active node.
At this point, the paths to the remaining pending nodes are updated. Continuing with
the example above, if the robot moves to node 4, the paths to the other pending nodes
(2 and 3) will be updated to (4, 1, 2) and (4, 1, 3). Furthermore, having reached node
4, the robot generates new pend- ing nodes. Note that the robot need not be located
exactly onnode 4; instead, a node is considered to be reached when the robot passes
within a distance « from it. The new nodes are added as described above. The
minimum distance requirement between added nodes (see above) is also enforced.
Proceeding with the example, the robot might, at this stage, add nodes 5 and 6, with
the paths (4, 5) and (4 ,6). Again, the robot selects the nearest node based on the
path length, rotates to face that node, and then starts moving towards it etc. Note that
the robot can (and will) visit completed nodes more than once. How- ever, by the
construction described above, only pending nodes can be target nodes.

In case (ii), i.e. when the target node cannot be reached, the node is assigned the
status unreachable, and the robot instead selects another target node and proceeds
towards it, along the appropriate path. This situation is illustrated in the lower left panel
of Fig. 6.2: Here, using its Proximity detection brain process, the robot concludes that
it cannot reach node 6. It therefore marks this node unreachable, sets it as the active
node, and then sets the nearest pending node as the new target, in this case node 5.
One may wonder why case (ii) can oc- cur, since the robot uses the LRF before
assigning new nodes. The reason, of course, is that the LRF (which is assumed to be
two-dimensional) only scans the arena at a given height, thus effectively only
considering a horizontal slice of the arena. A low obstacle may therefore be missed,
until the robot comes sulfficiently close to it, so that the Proximity detection brain
process can detect it.

124

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12!

S A

.
/.

4 Y
§ ,

7
4

A \0/\ 0\

Figure 6.3: Anillustration of a problem that might occur during exploration. Moving in one
particular direction (left panel) the robot is able to place and follow the nodes shown. However,
upon returning (right panel), the robot may conclude that it will be unable to pass the node
near the corner, due to the proximity detection triggered as the robot approaches the node,
with the wall right in front of it.

Note that unreachable nodes are exempt from the minimum distance require- ment.
This is so, since a given node may be unreachable from one direction but perhaps
reachable from some other direction. Thus, the exploration algorithm is allowed to
place new pending nodes arbitrarily close to unreachable nodes.

One should note that robust exploration of any arena is more difficult than it might
seem. An example of a problem that might occur is shown in Fig. 6.3. Here, the robot
passes quite near a corner on its outbound journey (left panel), but no proximity
detection is triggered. By contrast, upon returning (right panel) a proximity detection
is triggered which, in turn, may force the robot to abandon its current path. In fact, the
Exploration behavior contains a method (which will not be described here) for avoiding
such deadlocks. In the (very rare) cases in which even the deadlock avoidance
method fails, the robot sim- ply stops, and reports its failure.

Because of the path following strategy described above, the robot may sometimes
take an unnecessarily long path from the active node to the tar- get node. However,
this does not happen so often since, in most cases, the robot will proceed directly to
a newly added node, for which the path length is the same as the cartesian distance.
However, when the robot cannot place any more nodes (something that occurs, for
example, when it reaches a cor- ner), a distant node may become the target node.
Therefore, in cases where the path to the target node differs from the direct path, the
robot rotates to face the target node (provided that it is located within a distance L,
where L should be smaller than or equal to the range R of the LRF). Next, if the robot
concludes (based on its LRF readings) that it can reach the target node, it then
proceeds directly towards it, rather than following the path. However, also in this case,

125

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12

Figure 6.4: Left panel: The robot in its initial position in an unexplored arena. Right panel:
The final result obtained after executing the Exploration behavior. The completed (visited)
nodes are shown as green dots, whereas the (single) unreachable node is shown as a red dot.
The final target node (the last node visited) is shown as a blue dot. In this case, the robot
achieved better than 99.5% sensory area coverage of the arena.

it is possible that a (low) obstacle prevents the robot from reaching its target, in which
case the robot instead switches to following the path as described above.

The robot continues this cycle of node placement and movement between nodes,
until all nodes have been processed (i.e. either having been visited or deemed
unreachable), at which point the exploration of the arena is complete. The Exploration
behavior consists of an FSM with 17 states, which will not be

126

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12

@ ¢ 0 ¢
Figure 6.5: Three examples of grids that can be used in connection with grid-based naviga-
tion methods. In the left panel, the nodes are not equidistant, unlike the middle panel which
shows a regular lattice with equidistant nodes. The regular lattice can also be represented as

grid cells, as shown in the right panel. Note that the right and middle panels show equivalent
grids.

described in detail here. A performance example is shown in Fig. 6.4. The left panel
shows the robot at its starting point in a typical office arena. The right panel shows
the final result, i.e. the path generated by the robot. The completed (visited)
exploration nodes are shown as green dots, whereas the unreachable nodes (only
one in this case) are shown as red dots. The final target node is shown as a blue dot.
Note that the robot achieved a sensoryarea coverage (at the height of its LRF) of
more than 99.5% during exploration.

6.2 Navigation

In this section, it will again be assumed that the robot has access to accurate
estimates of its pose (from the Odometry brain process), and the question that will be
considered is: Given that the robot knows its pose and velocity, how can it navigate
between two arbitrary points in an arena? In the robotics liter- ature, many methods
for navigation have been presented, three of which will be studied in detail in this
section.

6.2.1 Grid-based navigation methods

In grid-based navigation methods, the robot’s environment must be covered with
an (artificial) grid, consisting of nodes (vertices) and edges connecting the nodes.
The grid may have any shape, as illustrated in the left panel of Fig. 6.5, i.e. it need
not be a rectangular lattice of the kind shown in the middle panel. However, if the grid
happens to be a rectangular lattice, it is often rep- resented as shown in the right
panel of the figure, where the nodes have been replaced by cells, and the edges are
not shown?. Furthermore, the edges must be associated with a (non-negative) cost,
which, in many cases is simply taken

Note that in the cell representation in the right panel, the sides of each cell are not edges: The
edges connect the centers of the grid cells to each other, as shown in the middle panel.

127

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12

Figure 6.6: Left panel: An example of automatic grid generation. The walls of the arena are
shown as green thin lines. The black regions represent the forbidden parts of the arena, either
unreachable locations or positions near walls and other obstacles. The grid cell boundaries
are shown as thick yellow lines. Right panel: An example of a path between two points in the
arena. The basic path (connecting grid cells) was generated using Dijkstra’s algorithm (see
below). The final path, shown in the figure, was adjusted to include changes of directions
within grid cells, thus minimizing the length of the path. Note that all cells are convex, so that
the path segments within a cell can safely be generated as straight lines between consecutive
waypoints.

as the euclidean distance between the nodes. Thus, for example, in the grids shown
in the middle and right panels of Fig. 6.5, the cost of moving between adjacent nodes
would be equal to 1 (length unit), whereas, in the grid shown in the left panel the cost
would vary depending on which nodes are involved.

An interesting issue is the generation of a navigation grid, given a two-
dimensional map of an arena. This problem is far from trivial, especially in complex
arenas with many walls and other objects. Furthermore, the grid gen- eration should
take the robot’s size (with an additional margin) into account, in order to avoid
situations where the robot must pass very close to a wall or some other object. The
grid-based navigation methods described below gener- ate paths between grid cells.
On aregular grid with small, quadratic cells (as in the examples below) it is sometimes
sufficient to let the robot move on straight lines between the cell centers. However, the
generated path may then become somewhat ragged. Furthermore, in more complex
grids, where the cells are of different size, following a straight line between cell centers
may result in an unnecessarily long path. Thus, in such cases, the robot must normally
modify its heading within a cell, in order to find the shortest path.

When generating a grid, one normally requires the grid cells to be convex,

128

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 12

1. Place the robot at the start node, which then becomes the current node.
Assign the status unvisited to all nodes.

2. Go through each of the cells a; that are (i) unvisited and (ii) directly reach- able
(via an edge) from the current node c. Such nodes are referred to as neighbors
of the current node. Compute the cost of going from a; to the target node 1,
using the heuristic f{a;).

3. Select the node awn associated with the lowest cost, based on the cost values
computed in Step 2.

4. Setthe status of the current node c as visited, and move to an» which then
becomes the current node.

5. Return to Step 2.

Figure 6.7: The best-first search algorithm.

so that all points on a straight line between any two points in the cell also are part of
the cell. One way of doing so is to generate a grid consisting of trian- gular cells, which
will all be convex. However, such grids may not be optimal: The pointiness of the grid
cells may force the robot to make many unnecessary (and sharp) turns. An algorithm
for constructing, from a map, a general grid consisting of convex cells with four or
more sides (i.e. non-triangular) exists as well®. Fig. 6.6 shows an example of a grid
generated with this algorithm. Because of its complexity, the algorithm will not be
considered in detail here. Instead, in the examples below, we shall consider grids
consisting of small quadratic cells, and we will neglect changes of direction within grid
cells.

Best-first search algorithm

In best-first search (BFS) algorithm the robot moves greedily towards thetar- get, as
described in Fig. 6.7. As can be seen, the BFS method chooses the next node based
on the (estimated) cost of going from that node n to the goal, which is estimated using
a heuristic function 1 (n). 1 (n) can be chosen in different ways, the simplest being to
use the euclidean distance between the node un- der consideration and the target.
However, in that case, the BFS method may, in fact, get stuck. A more sophisticated
heuristic function may, for example, add a penalty for each obstacle encountered on
a straight-line path from the node under consideration to the target node.

The path can be generated by simply storing the list of visited nodes during

3See Wahde, M., Sandberg, D., and Wolff, K. Reliable long-term navigation in indoor environ-
ments, In: Topalov, A.V. (Ed.), Recent advances in Mobile Robots, InTech, 2011, pp. 261-286.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13l

Figure 6.8: Two examples of paths generated using the BFS algorithm. The cells (nodes) that
were checked during path generation are shown in light green, whereas the actual path is
shown in dark green and with a solid line. The yellow cell is the start node and the white cell
is the target node.

path generation. The BFS method is very efficient in the absence of obstacles or when
the obstacles are few, small, and far apart. An example of such a path generated with
BFS is shown in the left panel of Fig. 6.8. As can be seen, the robot quickly moves
from the start node to the target node. However, if there are extended obstacles
between the robot’s current position and the target node, the BFS algorithm will not
find the shortest path, as shown in the right panel of Fig. 6.8. Because of its greedy
approach to the target, the robot will find itself in front of the obstacle, and must then
make a rather long detour to arrive at the target node.

Dijkstra’s algorithm

Like BFS, Dijkstra’s algorithm also relies on a grid in which the edges are as-
sociated with non-negative costs. Here, the cost will simply be taken as the euclidean
distance between nodes. Instead of focusing on the (estimated) cost of going from a
given node to the target note, Dijkstra’s algorithm considers the distance between the
start node and the node under consideration, as de- scribed in Fig. 6.9. In Step 2, the
distance from the start node s to any node a; is computed using the (known) distance
from the initial node to the current node ¢ and simply adding the distance between ¢ and
a;. This algorithm will check alarge number of nodes, in an expanding pattern from the
start node, as shown in Fig. 6.10. In order to determine the actual path to follow,
whenever a new node «a is checked, a note is made regarding the predecessor node
p, i.e. the

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13

1. Place the robot at the start node s, which then becomes the current node.
Assign the distance value 0 to the start node, and infinity to all other nodes (in
practice, use a very large, finite value). Set the status of all nodes to unvisited.

2. Go through all the unvisited, accessible (i.e. empty) neighbors a; of the current
node ¢, and compute their distance d from the start node s. If dis smaller than
the previously stored distance d; (initially infinite, see Step 1), then (i) update
the stored distance, i.e. set d; = d and (ii) assign the current node as the
predecessor node of a;.

3. After checking all the neighbors of the current node, set its status to vis- ited.

4. Select the node (among all the unvisited, accessible nodes in the grid) with the
smallest distance from the start node, and set it as the new cur- rent node.

5. Return to Step 2, unless the target has been reached.

6. When the target has been reached, use the predecessor nodes to trace a path
from the target node to the start node. Finally, reverse the order of the nodes
to find the path from the start node to the target node.

Figure 6.9: Dijkstra’s algorithm.

node that was the current node when checking node a. When the target has been
found, the path connecting it to the initial node can be obtained by going through the
predecessor nodes backwards, from the target node to the initial node.

Unlike the BFS algorithm, Dijkstra’s algorithm is guaranteed to find the shortest

path* from the start node to the target node. However, a drawback with Dijkstra’s
algorithm is that it typically searches many nodes that, in the end, turn out to be quite
irrelevant. Looking at the search patterns in Figs. 6.8 and 6.10, one may hypothesize
that a combination of the two algorithms would be useful. Indeed, there is an algorithm,
known as A* that combines the BFS and Dijkstra algorithms. Like Dijkstra’s algorithm,
A* is guaranteed to find the shortest path. Moreover, it does so more efficiently than
Dijkstra’s algorithm. However, A* is beyond the scope of this text.

“There may be more than one such path: Dijkstra’s algorithm will select one of them.

131

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13

Figure 6.10: Two examples of paths generated using Dijkstra’s algorithm. The cells (nodes)
that were checked during path generation are shown in light green, whereas the actual path
is shown in dark green and with a solid line. The yellow cell is the start node and the white cell
is the target node.

6.2.2 Potential field navigation

Unlike the algorithms described above, the potential field method does not require
a grid. In the potential field method, a robot obtains its desired direc- tion of motion as
the negative gradient of an artificial potential field, generated by potentials assigned to
the navigation target and to objects in thearena.

Potential fields

As shown in Fig. 6.11, a potential field can be interpreted as a landscape with hills
and valleys, and the motion of a robot can be compared to that of a ball rolling through
this landscape. The navigation target is assigned a potential corresponding to a gentle
downhill slope, whereas obstacles should generate potentials corresponding to steep
hills.

In principle, a variety of different equations could be used for defining dif- ferent
kinds of potentials. An example, namely a potential with ellipsoidal equipotential
surfaces, and exponential variation with (ellipsoidal) distance from the center of the
potential, takes the mathematical form

(=) ()’

o(X, y; Xp, ypo 0, B,) = o€ 5 v, (6.1)

where (x, y) is the current (estimated) position at which the potential is calcu- lated,
(x,, y,) is the position of the object generating the potential, and o, and y are constants
(not to be confused with the constants defined in connection

132

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13

\

Obstacle

Figure 6.11: A potential field containing a single obstacle and a navigation goal.

with the equations of motion in Chapter 2 and the sensor equations in Chapter 3). Now,
looking at the mathematical form of the potentials, one can see that an attractive
potential (a valley) is formed if a is negative, whereas a positive value of a will generate
a repulsive potential (a hill).

Normally, the complete potential field contains many potentials of the form given in
Eq. (6.1), so that the total potential becomes

>
D, y) = 0ilx, y; xp, Ypp @i, Bir), (6.2)
i=1

where k is the number of potentials. An example of a potential field, for a simple arena
with four central pillars, is shown in Fig. 6.12.

Navigating in a potential field

Once the potential field has been defined, the desired direction of motion t of the robot
can be computed as the negativegapthe normalized %radient of the field
r= - o® o (6.3)

Ox 0Oy

>

|| — o0 %2, ag 2

o33 3}7

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13

Figure 6.12: An illustration of potential field navigation in GPRSim. Upper left panel: Asimple
arena, with a robot following a potential field toward a target position in the upper left corner
of the arena. Upper right panel: The corresponding potential field, generated by a total of

134

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13!

nine potentials (one for the target, one for each of the walls, and one for each pillar). Lower
left panel: A contour plot of the potential field, in which the target position can be seen in the
upper left corner. Lower right panel: The trajectory followed by the robot. Note that, in this
simulation, the odometric readings were (unrealistically) noise-free.

135

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13t

In order to integrate the equations of motion of the robot, it is not sufficient only to
know the desired direction: The magnitude of the force acting on the robot must also
be known. In principle, the negative gradient of the potential field could be taken
(without normalization) as the force acting on the robot, providing both magnitude and
direction. However, in that case, the magni- tude of the force would vary quite strongly
with the position of the robot, making the robot a dangerous moving object (if it is
large). Thus, the poten- tial field is only used for providing the direction, as in Eq. (6.3).
The robot’s speed v (i.e. the magnitude of its velocity vector v) can be assigned in
various ways. For example, one may use proportional control to try to keep the speed
constant®.

An example of a trajectory generated during potential field navigation is shown in
the lower right panel of Fig. 6.12. In the experiment in which this figure was generated,
the noise in the odometric readings was (unrealistically) set to zero, since the aim here
is simply to illustrate potential field navigation. However, in a realistic application, one
would have to take into account the fact that the robot’s estimate of its pose will never
be error-free. Thus, when setting up a potential field, it is prudent to make the
potentials slightly larger® than the physical objects that they represent. At the same
time, in narrow corridors, one must be careful not to make the potentials (for walls on
opposite sides of the corridor, say) so wide that the robot will be unable topass.

In fact, the definition of a potential field for a given arena is something of an art. In
addition to the problem of determining the effective extension of the potentials, one
also has to decide whether a given object should be repre- sented by one or several
potentials (for instance of the form givenin Eq. (6.1)). For example, an extended object
(for example, a long wall) can be represented as a single potential (typically with very
different values of the parameters and y), but it can also be represented as a
sequence of potentials. In complex environments, one may resort to stochastic
optimization of the potentialfield, as well as the details of the robot’s motion in the

field”.

Aspects of potential field navigation

A gradient-following method, such as the potential field method, always suf- fers the
risk of encountering local minima in the field. Of course, in potential

>The procedure for assigning the robot’s speed in potential field navigation will be de- scribed
below.

80f course, since the exponential potentials defined in Eq. (6.1) have infinite extension,
the corresponding force never drops exactly to zero, but beyond a distance of a few d, where
d = max(p, y), the force is negligible.

“For an example of such an approach, see Savage et al., Optimization of waypoint-guided potential
field navigation using evolutionary algorithms, Proceedings of the 2004 IEEE/RSJ Inter- national
Conference on Intelligent Robots and Systems (IROS 2004), 3463-3468, 2004.

136

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13

Figure 6.13: The locking phenomenon. Following the gradient of the potential field the robot,
whose trajectory is shown as a sequence of black dots, moves along the x-axis toward the goal,
located at (2, 0). However, because of the local minimum in the potential field, the robot
eventually gets stuck.

field navigation, the goal is to reach the local minimum represented by the navigation
target. However, depending on the shape of the arena (and there- fore the potential
field), there may also appear one or several unwanted local minima in the field, at
which the robot may become trapped.

This is called the locking phenomenon and it is illustrated in Fig. 6.13. Here, a
robot encounters a wedge-shaped obstacle represented by three poten- tials. At a
large distance from the obstacle, the robot will be directed toward the goal potential,
which is located behind the obstacle as seen from the start- ing position of the robot.
However, as the robot approaches the obstacles their repulsive potentials will begin to
be noticeable. Attracted by the goal, the robot will thus eventually find itself stuck inside
the wedge, at a local minimum of the potential.

In order to avoid locking phenomena, the path between the robot and the goal can
be supplied with waypoints, represented by attractive potentials (for example, of the
form given in Eqg. (6.1)) with rather small extension. Of course, the introduction of
waypoints leads to the problem of determining where to

137

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13

put them. An analysis of such methods will not be given here®. Suffice it to say that
the problem of waypoint placement can be solved in various ways to aid the robot in
its navigation. A waypoint should be removed once the robot has passed within a
distance L from it, to avoid situations in which the robot finds itself stuck at a waypoint.

The potential field method also has several advantages, one of them being that
the direction of motion is obtained simply by computing the gradient of the potential
field at the current position, without the need to generate an en- tire path from the
current position to the navigation target. Furthermore, the potential field is defined for
all points in the arena. Thus, if the robot tem- porarily must suspend its navigation (for
example, in order to avoid a moving obstacle), it can easily resume the navigation
from wherever it happens to be located when the Obstacle avoidance behavior is
deactivated.

In the discussion above, only stationary obstacles were considered. Of course,
moving obstacles can be included as well. In fact, the potential field method is
commonly used in conjunction with, say, a grid-based navigation method, such that
the latter generates the nominal path of the robot, whereas the potential field method
is used for adjusting the path to avoid moving ob- stacles. However, methods for
reliably detecting moving obstacles are beyond the scope of this text.

Using the potential field method

As mentioned above, the potential field only provides the current desired di- rection of
motion. In order to specify a potential field navigation behavior com- pletely, one must
also provide a method for setting the speed of the robot. This can be done as follows:
Given the robot’s estimated (from odometry) angle of heading ¢.. and the desired
(reference) direction ¢.: (obtained from the po- tential field), one can form the quantity
Ag as

Ad = i — e, (6.4)

The desired speed differential AV (the difference between the right and left wheel
speeds) can then be set according to

AV = KanavA¢, (65)

where K, is a regulatory constant (P-regulation is used) and V.. is the (de- sired) speed
of the robot during normal navigation. Once AV has been com- puted, reference
speeds are sent to the (velocity-regulated) motors according to

VL = ‘/nav - ’ (66)

AV

8See, however, the paper by Savage et al. mentioned in Footnote 6.

138

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 13!

= V. + AV
VR Viar +) (6.7)

2
where vk and v. are the reference speeds of the left and right wheels, respec- tively.
Note that one can of course only set the desired (reference) speed values; the actual
speed values obtained depend on the detailed dynamics of the robot and its motors.

If the reference angle differs strongly from the estimated heading (which can
happen, for example, in situations where the robot comes sufficiently close to an
obstacle whose potential generates a steep hill), the robot may have to suspend its
normal navigation and instead carry out a pure rotation, setting v. = Vi, vz = Viu for a
left (counterclockwise) rotation, where V.. is the ro- tation velocity, defined along with
V. (@and the other constants) during setup. In case the robot should carry out a
clockwise rotation, the signs are reversed. The direction of rotation is, of course,
determined by the sign of the differ- ence between the reference angle and the
(estimated) heading. In this case, the robot should turn until the difference between the
reference angle and the esti- mated heading drops below a user-specified threshold,
at which point normal navigation can resume.

6.3 Localization

In Sects. 6.1 and 6.2, it was (unrealistically) assumed that the robot’s odome- try
would provide perfect estimates of the pose. In reality, this will never be the case, and
therefore the problem of recalibrating the odometric readings, from time to time, is a
fundamental problem in robotics. Doing so requires a method for localization
independent from odometry, and such methods usu- ally involve LRFs (even though
cameras are also sometimes used), sensors that are difficult to simulate in ARSIim
(because of the large number of rays which would slow down the simulation
considerably). Therefore, in this section, lo- calization will be described as it is
implemented in the simulator GPRSim and in GPRBS, where LRFs are used.

Robot localization requires two brain processes: The cognitive Odometry process
and an independent process for odometric recalibration, which both in GPRSim and
in GPRBS goes under the name Laser localization, since the behavior for odometric
recalibration uses the readings of an LRF, together with a map, to infer its current
location using scan matching, as describedbelow.

In fact, the problem of localization can be approached in many different ways. For
outdoor applications, a robot may be equipped with GPS, which in many cases will
give sufficiently accurate position estimates. However, in indoor applications
(standard) GPS cannot be used, since the signal is too weak to penetrate the walls of
a building. Of course, it is possible to set up a local GPS system, for example by
projecting IR beacons on the ceiling, using which

139

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 14

Figure 6.14: An illustration of the need for localization in mobile robot navigation. In the left
panel, the robot navigates using odometry only. As a result, the odometric trajectory (red)
deviates quite significantly from the actual (green) trajectory. In the right panel, Laser
localization was activated periodically, leading to much improved odometric estimates.

the robot can deduce its position by means of triangulation®. However, such a system
requires that the arena should be adapted to the robot, something that might not
always be desirable or even possible.

The localization method (combining odometry and laser scan matching) that will
be described here is normally used together with some navigation behavior. Thus, the
robotic brain will consist of at least two motor behav- iors, in which case decision-
making also becomes important. This topic will be studied in a later chapter: For now,
the Laser localization behavior will be considered separately.

6.3.1 Laser localization

The behavior is intended for localization in arenas for which a map has been provided
to the robot (in the form of a sequence of lines). The map can ei- ther be obtained
using a robot (executing a Mapping behavior) or, for example, from the floor plan of a
building. The behavior relies on scans of the arena using a two-dimensional LRF and,
like many methods for localization in auto- nomous robots, it assumes that all scans
are carried out in a horizontal plane, thus limiting the behavior to planar (i.e. mostly
indoor) environments. Infact, the name Laser localization is something of a misnomer:
The behavior does not actually carry out (continuous) localization. Instead, when
activated, the behavior takes as input the current pose estimate and tries to improve
it. If

°This is the method used in the Northstar® system, developed by Evolution Robotics, inc.

140

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 14

Figure 6.15: An enlargement of the most significant correction in odometric readings (in the
right panel of Fig. 6.14) resulting from the Laser localization behavior.

successful, the odometric pose is reset to the position suggested by the Laser
localization behavior.

The left panel of Fig. 6.14 illustrates the need for localization: The nav- igation
task shown in Fig. 6.12 was considered again (with the same start- ing point, but a
different initial direction of motion), this time with realistic (i.e. non-zero) levels of noise
in the wheel encoders and, therefore, also in the odometry. As can be seen in the
figure, the odometric drift causes a rather large discrepancy between the actual
trajectory (green) and the odometric es- timate (red). In the right panel, the robotic
brain contained two behaviors (in addition to the cognitive Odometry process), namely
Potential field navigation and Laser localization. The Laser localization behavior was
activatedperiodically (thus deactivating the Potential field navigation behavior), each
time recalibrat- ing (if necessary) the odometric readings. As can be seen in the right
panel of Fig. 6.14, with laser localization in place, the discrepancy between the odo-
metric and actual trajectories is reduced significantly. At one point, the Laser
localization behavior was required to make a rather large correction of the odo- metric
readings. That particular event is shown enlarged in Fig. 6.15. As can be seen, the
odometric readings undergo a discrete step at the moment of lo- calization.

When activated, the localization behavior'® considered here first stops the

105ee Sandberg, D., Wolff, K., and Wahde, M. A robot localization method based on laser scan

141

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 14,

(:
g ,)/

Figure 6.16: Two examples of scan matching. The leftmost panel in each row shows a few
rays (solid lines) from an actual LRF reading (plotted in the map used by the virtual LRF), and
the middle panels show the virtual LRF readings (dotted lines) in a case in which the estimated
pose differs quite strongly from the correct one (upper row), and one in which the difference
is small (bottom row). The direction of heading is illustrated with arrows. The right panel in
each row shows both the actual LRF rays and the virtual ones. The figure also illustrates the
map, which consists of a sequence of lines.

robot, and then takes a reading of the LRF. Next, it tries to match this reading to a
virtual reading taken by placing a virtual LRF (hereafter: vLRF) at various positions in
the map. Two examples of scan matching are shown in Fig. 6.16. The three panels in
the upper row show a situation in which the odometry has drifted significantly. The
upper left panel shows the readings (i.e. laser ray distances) from an actual LRF
mounted on top of the robot (not shown). Note that, for clarity, the figure only shows
a few of the many (typically hundreds) laser ray directions. The upper middle panel
shows the readings of the vLRF, placed at the initial position and heading obtained
from odometry. As can be seen in the upper right panel, the two scans match rather
badly. By contrast, the three panels of the bottom row show a situation in which the
pose error is small. The purpose of the search algorithm described below is to be able
to correct the odometry, i.e. to reach a situation similar to the one shown in the bottom
row of Fig. 6.16. Fig. 6.17 shows another example of a good (left panel) and a bad
(right panel) scan match. In the case shown in the left panel, the

matching, Proc. of AMIRE 2009, pp. 171-178, 2009.

142

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 14

Figure 6.17: Matching of LRF rays (in a different arena than the one used in the examples
above). The readings of the actual LRF are shown in green, and those of the virtual LRF are
shown in red. Left panel: An almost exact match. Right panel: In this case, the odometry has
drifted enough to cause a large discrepancy between the actual and virtual LRF rays.

odometric pose estimate is quite good, so that the rays from the actual LRF (green)
match those of the vLRF quite well, at the current pose estimate. By constrast, in the
situation shown in the right panel, the odometry has drifted significantly.

Scan matching algorithm

Let p = (x, y,) denote a pose (in the map) of the vLRF. The distances between the
vLRF and an obstacle, along ray i, are obtained using the map'' and are de- noted 4.
Similarly, the distances obtained for the real LRF (at its current pose, which normally
differs from p when the localization behavior is activated) are denoted d..

The matching error s between two scans can be defined in various ways. For rays
that do not intersect an obstacle, the corresponding reading (d; or 6,) is (arbitrarily) set
to -1. Such rays should be excluded when computing the error. Thus, the matching

error is taken as
TE g

~.

s = Xi i ’ (6'8)

where n is the number of LRF rays used'?. The parameter y; is equal to one

n practice, the ray reading &; of the vLRF is obtained by checking for intersection between the lines
in the map and a line of length R (the range of the LRF) pointing in the direction of the ray, and then
choosing the shortest distance thus obtained (corresponding to the nearest obstacle along the ray). If
no intersection is found, the corresponding reading is set to-1.

2For example, in the case of a Hokuyo URG-04LX LRF, a maximum of 682 rays are available.

143

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 14

for those indices i for which boththe real LRF and the vLRF detect an obstacle (i.e.
obtain a reading different from -1) whereas y; is equal to zero for indices i such that
either the real LRF or the vLRF (or both) do not detect any obstacle (outto the range
R of the LRF). v denotes the number of rays actually used in forming the error
measure, i.e. the number of rays for which y; is equal to one. As can be seen, sis a
measure of the (normalized) average relative deviation in detected distances
between the real LRF and the vLRF.

Since d; are given and J; depend on the pose of the vLRF, one may write s = s(p).
Now, if the odometric pose estimate happens to be exact, the virtual and actual LRF
scans will be (almost) identical (depending on the accuracy of the map and the noise
level in the real LRF), resulting in a very small matching error, in which case the
localization behavior can be deactivated and therobot may continue its navigation.
However, if the error exceeds a user-defined threshold 7', the robot can conclude that
its odometric estimates are not suf- ficiently accurate, and it must therefore try to
minimize the matching errorby trying various poses in the map, i.e. by carrying out a
number of virtual scans, in order to determine the actual pose of the robot. The scan
matching problem can thus be formulated as the optimization problem of finding the
pose p = p. that minimizes s = s(p). Once this pose has been found, the new
odometric pose p™ is set equal to p..

Note that it is assumed that the robot is standing still during localization.

This restriction (which, in principle, can be removed) is introduced in order to (i) avoid
having to correct for the motion occuring during the laser sweep, which typically lasts
between 0.01 and 0.1 s and (ii) avoid having to correct for the motion that would
otherwise take place during scan matching procedure, which normally takes a (non-
negligible) fraction of a second. Thus, only one scan needs to be carried out using the
real LRF mounted on the robot. The re- maining work consists of generating virtual
scans in the map, at a sequence of poses, and to match these to the actual LRF
readings. Unlike some other scan matching methods, the method used here does not
attempit to fit lines to the LRF readings. Instead, the LRF rays (actual and virtual, as
described above) are used directly during scan matching. The sequence of poses for
the VLRF is generated as follows: First the actual LRF scan is carried out, generating
the distances d;. Next, a virtual scan is carried out (in the map) at the current estimated
position po. If the error so = s(po) is below the threshold 7', local- ization is complete. If
not, the algorithm picks a random pose p; (where j = 1in the first iteration) in a
rectangular box of size L, L, L4, centered on po in pose space, and computes the
matching error s; = s(p;). The constants L. and L, are typically set to around 0.1 m
and the constant L, is set to around

0.1 radians.

The process is repeated until, for some j =i, an error>§j1 < siis found. At this point,
the rectangular box is re-centered to p;, , and the search continues, now picking a
random pose in the rectangular box centered on p;,. Once a po-

144

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 14!

A
[A A] [p A A i
—2.05 |- 4 205 -
m o L P m O
r A 1 r 43
[» 1 =210 0 b
—2.10] O 4]
r 38 1
r 18 - + i
e | y A
¢] 4
L 1 H A
215 1 —2as[i
i ges ©
L - A
G
220 1 a0f]
[1 L €]
v L 3‘4 -
12
.25
225 17
24
0.50 0.55 0.60 0.65 0.70 075 0.40 0.45 0.50 055 0.60 0.65

145

position (measured in meters) of the robot is indicated with a filled square. The initial estimated
position (i.e. from odometry, before correction) is shown as a filled disc, and the final estimated
position is visualized as an open square. The intermediate points generated during the search
are represented as open discs and are shown together with the corresponding iteration
number. Note that, for clarity, only some of the intermediate points are shown.

sition p;, is found for which s;, < s;,, the rectangular box is again re-centered etc. The
procedure is repeated for a given number (N) of iterations 3.

Even though the algorithm is designed to improve both the position and the
heading simultaneously, in practice, the result of running the algorithm is usually to
correct the heading first (which is easiest, since an error in heading typically has a
larger effect on the scan match than a position error), as can be seen clearly in the
right panel of Fig. 6.18. At this stage, the estimated pose can make a rather large
excursion in position space. However, once a fairly correct heading has been found,
the estimated position normally converges quite rapidly to the correct position.

5. Related Work

NhAantAarv

Autonomous robots

Both animals and robots manipulate objects in their environment in order to achieve
certain goals. Animals use their senses (e.g. vision, touch, smell) to probe the
environment. The resulting information, in many cases also en- hanced by the
information available from internal states (based on short-term or long-term memory),
is processed in the brain, often resulting in an action carried out by the animal, with
the use of its limbs.

Similary, robots gain information of the surroundings, using their sensors. The
information is processed in the robot’s brain', consisting of one orseveral processors,
resulting in motor signals that are sent to the actuators (e.g. motors) of the robot.

In this course, the problem of providing robots with the ability of making rational,

146

(REAGERTUECEIRL R AL AN Y HRNANB SRS bi46dR brains is the maift

theme of the course. However, a robotic brain cannot op- erate in isolation: It needs
sensory inputs, and it must produce motor output in order to influence objects in the
environment. Thus, while it is the author's view that the main challenge in
contemporary robotics lies with the devel- opment of robotic brains, consideration of
the actual hardware, i.e. sensors, processors, motors etc., is certainly very important
as well.

This chapter gives a brief overview of robotic hardware, i.e. the actual frame
(body) of a robot, as well as its sensors, actuators, processors etc. The

The term control system is commonly used (instead of the term robotic brain). However, this term
is misleading, as it leads the reader to think of classical control theory. Concepts from classical control
theory are relevant in robots; For example, the low-level control of the motors of robots is often taken
care of by PI- or PID-regulators. However, autonomous robots, i.e. freely moving robots that operate
without direct human supervision, are expected to function in complex, unstructured environments,
and to make their own decisions concerning which action to take in any given situation. In such cases,
systems based only on classical control theory are simply insufficient. Thus, hereafter, the term robotic
brain (or, simply, brain) will be used when referring to the system that provides an autonomous robot,
however simple, with the ability to process information and decide upon which actions to take.

147

CHAPTER 1. AUTONOMOUS ROBOTS 14

Figure 1.1: Left panel: A Boe-bot. Right panel: Awheeled robot currently under construction in
the Adaptive systems research group at Chalmers.

various hardware-related issues will be studied in greater detail in the second half of
the course, which will involve the construction of an actual robot of the kind shown in
the left panel of Fig. 1.1.

1.3 Robot types

The are many different types of robots, and the taxonomy of such machines can be
constructed in various ways. For example, one may classify differentkinds of robots
based on their complexity, their likeness to humans (or animals), their way of moving
etc. In this course we shall limit ourselves to mobile robots, that is, robots that are
able to move freely using, for example, wheels. The other main category of robots are
stationary robotic arms, also referred to as robotic manipulators. Of course, as with
any taxonomy, there are always ex- amples that do not fit neatly into any of the
available categories. Forexample, a smart home equipped with a central computer
and, perhaps, some form of manipulation capabilities, can also be considered a robot,
albeit of a different kind.

Robotic manipulators constitute a very important class of robots and they are used
extensively in many industries, for example in assembly lines in the vehicle industry.
However, such robots normally follow a predefined move- ment sequence and are not
equipped with behaviors (such as collision avoid- ance) designed to avoid harming
people. While there is nothing preventing the use of, for instance, sonar proximity
sensors on arobotic manipulator, such op- tions are rarely used. Instead, manipulators
are confined to robotic work cells,

148

CHAPTER 1. AUTONOMOUS ROBOTS 14!

Figure 1.2: A Kondo humanoid robot. Left panel: Front view. Right panel: Rear view.

in which people are forbidden to enter while the manipulator is active.

By contrast, in this course, we shall consider autonomous robots, i.e. robots that
are capable of making their own decisions (depending on the situation at hand) rather
than merely executing a pre-defined sequence of motions. In fact, since most robots
equipped with such decision-making capabilities are mo- bile, one may define an
autonomous robot as a mobile robot with the ability to make decisions. Two examples
of mobile robots can be seen in Fig. 1.1. The left panel shows a Boe-bot, which will
be assembled and used in the second half of the course. Some of its main
advantages are its small size (its length is around 0.14 m and its width 0.11 m) and
its simplicity. Needless to say, the robot also has several limitations; for example, its
onboard processor (micro- controller) is quite slow. However, on balance, the Boe-bot
provides a good introduction to the field of mobile robots. The right panel of Fig. 1.1
shows atwo-wheeled differentially steered robot which, although still under construc-
tion at the Adaptive systems research group at Chalmers, is already being used in
several research projects. This robot has a diameter of 0.40 m and a height of around
1.00 m.

Robotic manipulators have long dominated the market for robots, but with the
advent of low-cost mobile robots the situation is changing: In 2007, the number of
mobile robots surpassed the number of manipulators for the first time, and the gap is
expected to widen over the next decades.

The class of mobile robots can be further divided into subclasses, the most

149

CHAPTER 1. AUTONOMOUS ROBOTS 15

Figure 1.3: The aluminium frame of a Boe-bot.

important being legged robots and wheeled robots. Other kinds, such as fly- ing
robots, exist as well, but will not be considered in this course. The class of legged
robots can be subdivided based on the number of legs, the most common types being
bipedal robots (with two legs) and quadrupedal robots (with four legs). Most bipedal
robots resemble humans, at least to some extent; such robots are referred to as
humanoid robots. An example of a humanoid robot is shown in Fig. 1.2. Humanoid
robots that (unlike the robot shown in Fig. 1.2) not only have the approximate shape
of a human, but have also been equipped with more detailed human-like features,
e.g. artificial skin, artificial hair etc., are called androids. It should be noted that the
term humanoid refers to the shape of the robot, not its size; in fact, many humanoid
robots are quite small. For example, the Kondo robot shown in Fig. 1.2 is
approximately 0.35 m tall.

Some robots are partly humanoid. For example, the wheeled robot shown in the
right panel of Fig. 1.1 is currently being equipped with a humanoid up- per body. Unlike
a fully humanoid robot, this robot need not be actively bal- anced, but will still exhibit
many desirable features of humanoid robots, such as two arms for grasping and lifting
objects, gesturing etc., as well as a head that will be equipped with two cameras for
stereo vision and microphones providing capabilities for listening and speaking.

150

CHAPTER 1. AUTONOMOUS ROBOTS 15

Figure 1.4: Left panel: Aluminium parts used in the construction of a rotating base for a
humanoid upper body. The servo motor used for rotating the base is also shown, as well as
the screws, washers and nuts. Right panel: The assembled base.

1.4 Robotic hardware

1.4.1 Construction material

Regarding the material used in the actual frame of the robot, several options are
available, such as e.g. aluminium, steel, various forms of plastic etc. The frame of a
robot should, of course, preferably be constructed using a material that is both sturdy
and light and, for that reason, aluminium is often chosen. Albeit somewhat expensive,
aluminium combines toughness with lowweight in a near-optimal way, at least for
small mobile robots. Steel is typically too heavy to be practical in a small robot,
whereas many forms of plastic eas- ily break. The frame of the robot used in this
course (the Boe-bot) is made in aluminium, and is shown in Fig. 1.3. The left panel
of Fig 1.4 shows the aluminium parts used in a rotating base for a humanoid upper
body. The as- sembled base, which can rotate around the vertical axis, is shown in
the right panel.

1.4.2 Sensors

The purpose of robotic sensors is to measure either some physical characteris- tic of
the robot (for example, its acceleration) or some aspect of its environment (for example,
the detected intensity of a light source). The raw data thus ob- tained must then, in
most cases, be processed further before being used in the brain of the robot. For
example, an infrared (IR) proximity sensor may pro- vide a voltage (depending on the
distance to the detected object) as its read- ing, which can then be converted to a
distance, using the characteristics of the sensor available from its data sheet.

151

CHAPTER 1. AUTONOMOUS ROBOTS 15:

Figure 1.5: Left panel: A Khepera Il robot. Note the IR proximity sensors (small black
rectangles around the periphery of the robot), consisting of an emitter and a detector. Right
panel: A Sharp GP2D12 infrared sensor.

Needless to say, there exists a great variety of sensors for mobile robots. Here,
only a brief introduction will be given, focusing on a few fundamental sensor types.

Infrared proximity sensors

An infrared proximity sensor (or IR sensor, for short), consists of an emitter and a
detector. The emitter, a light-emitting diode (LED), sends out infrared light, which
bounces off nearby objects, and the reflected light is then mea- sured by the detector
(e.g. a phototransistor). Some IR sensors can also be used for measuring the ambient
light level, i.e. the light observed by the detector when the emitter is switched off. As
an example, consider the Khepera robot (manufactured by K-Team, www.k-
team.com), shown in the left panel Fig. 1.5. This robot is equipped with eight IR
sensors, capable of measuring both am- bient and reflected light. The range of IR
sensors is quite short, though. In the Khepera robot, reflected light measurements
are only useful to a distance of around 0.050 m from the robot, i.e. approximately one
robot diameter, even though other IR sensors have longer range. Another example is
the Sharp GP2D12 IR sensor, shown in the right panel of Fig. 1.5. This sensor detects
ob- jects in the range [0.10, 0.80] m. It operates using a form of triangulation: Light is
emitted from the sensor and, if an object is detected, the reflected light is re- ceived at
an angle that depends on the distance to the detected object. The raw signal from the
sensor consists of a voltage that can be mapped to a distance. The mapping is non-
linear, and for very short distances, the sensor cannot give

152

CHAPTER 1. AUTONOMOUS ROBOTS 15

/\ /\

> >

Figure 1.6: The left panel shows a simple encoder, with a single detector (A), that measures
the interruptions of a light beam, producing the curve shown below the encoder. In the right
panel, two detectors are used, making it possible to determine also the direction of rotation.

reliable readings (hence the lower limit of 0.10 m).

Digital optical encoders

In many applications, accurate position information is essential for a robot, and there
are many different methods for positioning, e.g. inertial navigation, GPS navigation,
landmark detection etc., some of which will be considered in a later chapter. One of the
simplest forms of positioning, however, is dead reck- oning, in which the position of
arobot is determined based on measurements of the distance travelled by each wheel
of the robot. This information, when combined with knowledge of the robot’s physical
properties (i.e. its kinemat- ics, see Chapter 2) allows one to deduce the current
position and heading. The process of measuring the rotation of the wheel of a robot
is an example of odometry, and a sensor capable of such measurements is the
digital optical encoder or, simply, encoder. Essentially, an encoder is a disc made
of glass or plastic, with shaded regions that regularly interrupt a light beam. By count-
ing the number of interruptions, the rotation of the wheel can be deduced, as shown
in the left panel of Fig. 1.6. However, in order to determine also the di- rection of
rotation, a second detector, placed at a quarter of a cycle out of phase

153

‘
\

CHAPTER 1. AUTONOMOUS ROBOTS 15

Figure 1.7: A Ping ultrasonic distance sensor.

with the first detector, is needed (such an arrangement is called quadrature
encoding, and is shown in the right panel of Fig. 1.6).

Ultrasound (sonar) sensors

Ultrasound sensors, also known as sonar sensors or simply sonars, are based on
time-of-flight measurement. Thus, in order to detect the distance to an ob-ject, a sonar
emits a brief pulse of ultrasonic sound, typically in the frequency range 40-50 kHz?.
The sensor then awaits the echo. Once the echo has been detected, the distance to
the object can be obtained using the fact that sound travels at a speed of around 340
m/s. As in the case of IR sensors, there is both a lower and an upper limit for the
detection range of a sonar sensor. If the distance to an object is too small, the sensor
simply does not have enough time to switch from emission to listening, and the signal
is lost. Similarly, if the distance is too large, the echo may be too weak to be detected.

Fig. 1.7 shows a Ping ultrasonic distance sensor, which is commonly used in
connection with the Boe-bot. This sensor can detect distances to objects in the range
[0.02, 3.00] M.

Laser range finders

Laser range finders (LRFs) commonly rely, like sonar sensors, on time-of-flight
measurements, but involve the speed of light rather than the speed of sound. Thus, a
laser range finder emits pulses of laser light (in the form of thin beams),

2For comparison, a human ear can detect sounds in the range 20 hz to 20 kHz. Thus, the sound
pulse emitted by a sonar sensor is not audible.

154

CHAPTER 1. AUTONOMOUS ROBOTS 15!

Figure 1.8: Left panel: A Hokuyo URL-04LX laser range finder. Right panel: A typical reading,
showing the distance to the nearest object in various directions. The pink rays indicate
directions in which no detection is made. The maximum range of the sensor is 4m.

and measures the time it takes for the pulse to bounce off a target and return to the
range finder. An LRF carries out a sweep over many directions® resulting in an
accurate local map of distances to objects along the line-of-sight of each ray. LRFs
are generally very accurate sensors, but they are also much more expensive than
sonars sensors and IR sensors.

A Hokuyo URG-04LX LRF is shown in the left panel of Fig. 1.8. This sensor has a
range of around four meters, with an accuracy of around 1 mm. It can generate
readings in 683 different directions, with a frequency of around 10 Hz. As of the time
of writing (Jan. 2010), a Hokuyo URG-04LX costs around 2,000 USD. The right panel
of Fig. 1.8 shows a typical reading, obtained from the software delivered with the LRF.

Cameras

Cameras are used as the eyes of a robot. In many cases, two cameras are used, in
order to provide the robot with binocular vision, allowing it to estimatethe range to
detected objects. There are many cameras available for robots, for example the
CMUCam series which has been developed especially for use in mobile robots; The
processor connected to the CMUCam is capable of basic image processing. At the
time of writing (Jan. 2010), a CMUCam costs on the order of 150 USD. A low-cost
alternative is to use ordinary webcams, for which prices start around 15 USD. Fig. 1.9
shows a simple robotic head consisting of two servo motors (see below) and a single
webcam.

However, while the actual cameras may not be very costly, the use of cam- eras
is computationally a very expensive procedure. Even at a low resolution,

3A typical angular interval for an LRF is around 180-240 degrees.

155

CHAPTER 1. AUTONOMOUS ROBOTS 15t

Figure 1.9: A simple robotic head, consisting of two servo motors and a webcam.

say 320 240 pixels, a webcam will deliver a flow of around 1.5 Mb/s, assum- ing a
frame rate of 20 Hz and a single byte of data per pixel. The actual data transfer is
easily handled by a Universal serial bus (USB), but the data must not only be
transferred but also analyzed, something which is far from trivial. An introduction to
image processing for robots will be given in a later chapter.

Other sensors

In addition to odometry based on digital optical encoders, robot positioning can be
based on inertial sensors, i.e. sensors that measure the time derivatives of the
position or heading angle of the robot. Examples of inertial sensors are
accelerometers, measuring linear acceleration, and gyroscopes, measuring an-
gular acceleration. Essentially, an accelerometer consists of a small object, with mass
m, attached to a spring and damper, as shown in Fig. 1.10. As the system accelerates,
the displacement z of the small object can be used to deduce the acceleration x of the
robot. Given continuous measurements of the accelera- tion, as a function of time,
the position (relative to the starting position) can be

156

CHAPTER 1. AUTONOMOUS ROBOTS 15

A X

Figure 1.10: An accelerometer. The motion of the small object (mass m) resulting from the
acceleration of the larger object to which the accelerometer is attached can be used for
deducing the acceleration.

deduced. For robots operating in outdoor environments, positioning based on the
global positioning system (GPS) is often a good alternative. The GPS re- lies on
24 satellites that transmit radio frequency signals which can be picked up by objects
on Earth. Given the exact position of (at least) three satellites, rel- ative to the position
of e.g. a robot, the absolute position (latitude, longitude, and altitude) of the robot can
be deduced.

Other sensors include strain gauge sensors (measuring deformation), tac- tile
(touch) sensors measuring physical contact between a robot and objects in its
environment, and compasses, measuring the direction of movement.

1.4.3 Actuators

An actuator is a device that allows a robot to take action, i.e. to move or manip- ulate
the surroundings in some other way. Motors, of course, are very common types of
actuators. Other kinds of actuation include, for example, the use of microphones (for
human-robot interaction).

Movements can be generated in various ways, using e.g. electrical motors,
pneumatic or hydraulic systems etc. In this course, we shall only consider electrical,
direct-current (DC) motors and, in particular, servo motors. Thus, when referring to
actuation in this course, the use of such motors isimplied.

Note that actuation normally requires the use of a motor controller in con- nection
with the actual motor. This is so, since the microcontroller (see below) responsible for
sending commands to the motor cannot, in general, provide sufficient current to drive
the motor. The issue of motor control will be consid- ered briefly in connection with the
discussion of servo motors below.

157

CHAPTER 1. AUTONOMOUS ROBOTS 15

Figure 1.11: A conducting wire in a magnetic field. B denotes the magnetic field strength
and I the current through the wire. The Lorentz force F acting on the wire is given by F =1
X B.

FaA 1]
—————— > A ———1»
4
~————- >

————— >
IF i I .

Figure 1.12: A conducting loop of wire placed in a magnetic field. Due to the forces acting
on the loop, it will begin to turn. The loop is shown from above in the right panel, and from
the side in the left panel.

DC motors

Electrical direct current (DC) motors are based on the principle that a force acts on a
wire in a magnetic field if a current is passed through the wire, as illustrated in Fig.
1.11. If instead a current is passed through a closed loop of wire, as illustrated in Fig.
1.12, the forces acting on the two sides of the loop will point in opposite directions,
making the loop turn. A standard DC motor consists of an outer stationary cylinder
(the stator), providing the magnetic field, and an inner, rotating part (the rotor). From
Fig. 1.12 it is clear that the loop will reverse its direction of rotation after a half-turn,
unless the direction of the current is reversed. The role of the commutator, connected
to the rotor of a DC motor, is to reverse the current through the motor every half-turn,
thus allowing continuous rotation. Finally, carbon brushes, attached to the stator,
complete the electric circuit of the DC motor. There are types of DC motors

158

CHAPTER 1. AUTONOMOUS ROBOTS 15!

+ O 00
L
\%

Figure 1.13: The equivalent electrical circuit for a DC motor.

that use electromagnets rather than a permanent magnet, and also types that are
brushless. However, a detailed description of such motors are beyond the scope of
this text.

DC motors are controlled by varying the applied voltage. The equations for DC
motors can be divided into an electrical and a mechanical part. The motor can be
modelled electrically by the equivalent circuit shown in Fig. 1.13. Letting V denote the
applied voltage, and w the angular speed of the motor shaft, the electrical equation
takes the form

di | Ri+ Vi, (1.1)
V=IL_

dr

where i is the current flowing through the circuit, L is the inductance of the motor, R
its resistance, and Vuw the voltage (the back EMF) counteracting V. The back EMF
depends on the angular velocity, and can be written as

Vevr = ce, (1.2)

where c. is the electrical constant of the motor. For a DC motor, the generated torque
7, is directly proportional to the current, i.e.

Tg = Cti, (1.3)

where ¢, is the torque constant of the motor. Turning now to the mechanical equation,
Newton’s second law gives

e =, (1.4)

d:

where I is the combined moment of inertia of the motor and its load, and risghe
total torque acting on the motor. For the DC motor, the equation takes the form

dow 159

Te — Tr— T (11563(

=)

CHAPTER 1. AUTONOMOUS R]OBOIS
dr

160

CHAPTER 1. AUTONOMOUS ROBOTS 16

Figure 1.14: Left panel: A HiTec 645MG servo. The suffix MG indicates that the servo is
equipped with a metal gear train. Right panel: A Parallax servo, which has been modified for
continuous rotation. Servos of this kind are used on the Boe-bot. The circular (left) and star-
shaped (right) white plastic objects are the servo horns.

where zris the frictional torque opposing the motion and z is the (output) torque acting
on the load. The frictional torque can be divided into two parts, the Coulomb friction
(ccsgn(w)) and the viscous friction (c,w). Thus, the equations for the DC motor can
now be summarized as

.- Gy oL di _ ek (1.6)
8 R Rdr R
dw
IE = 7, — ccsgn(w) — cvo — 7, (1.7)

In many cases, the time constant of the electrical circuit is much shorter than that of
the physical motion, so the inductance term can be neglected. Further- more, for
simplicity, the dynamics of the mechanical part can also be neglected under certain
circumstances (e.g. if the moment of inertia of the motor and load is small). Thus,
setting di/dr and dwdr to zero, the steady-state DC mo- tor equations, determining
the torque 7 on the load for a given applied voltage V and a given angular velocity o

C CeCy

= —V - R 1.8
“ T RV TR (1.8)
T = 1, — cesgn(w) — cvw, (1.9)

are obtained. In many cases, the axis of a DC motor rotates too fast and gener- ates
atorque that is too weak for driving a robot. Thus, a gear box is commonly used, which
reduces the rotation speed taken out from the motor (on the sec- ondary drive shaft)
while, at the same time, increasing the torque. For an ideal (loss-free) gear box, the
output torque and rotation speed are givenby

Tout = GT,

161

CHAPTER 1. AUTONOMOUS ROBOTS 16:

Figure 1.15: Pulse width modulation control of a servo motor. The lengths of the pulses
determine the requested position angle of the motor output shaft. The interval betwwn pulses
(typically around 20 ms) is denoted T .

1
Wt = o, (1.10)

G
where G is the gear ratio.

Servo motors

A servo motor is essentially a DC motor equipped with control electronics and a gear
train (whose purpose is to increase the torque to the required level for moving the
robot, as described above). The actual motor, the gear train, and the control
electronics, are housed in a plastic container. A servo horn (either plastic or metal)
makes it possible to connect the servo motor to a wheel or some other structure. Fig.
1.14 shows two examples of servo motors.

The angular position of a servo motor's output shaft is determined using a
potentiometer. In a standard servo, the angle is constrained to a given range [auax,
amax], @and the role of the control electronics is to make sure that the servo rotates to a
set position a (given by the user). A servo is fitted with a three-wire cable. One wire
connects the servo to a power source (for exam- ple, a motor controller or, in some
cases, a microcontroller board) andanother wire connects it to ground. The third wire
is responsible for sending signals to the servo motor. In servo motors, a technique
called pulse width modulation

162

CHAPTER 1. AUTONOMOUS ROBOTS 16.

Figure 1.16: An arm of a humanoid robot. The allowed rotation range of the elbow is around
100 degrees.

(PWM) is used: Signals in the form of pulses are sent (e.g. from a microcon- troller)
to the control electronics of the servo motor. The duration of the pulses determine the
required position, to which the servo will (attempt to) rotate, as shown in Fig. 1.15. For
a walking robot (or for a humanoid upper body), the limitation to a given angular range
poses no problem: The allowed rotation range of a servo is normally sufficient for, say,
an elbow or a shoulder joint. As an example, an arm of a humanoid robot is shown in
Fig. 1.16. For this particu- lar robot, the rotation range for the elbow joint is around 100
degrees, i.e. easily within the range of a standard servo (around 180 degrees). The
limitation is, of course, not very suitable for motors driving the wheels of a robot.
Fortunately, servo motors can be modified to allow continuous rotation. The Boe-bot
that will be built in the second half of the course uses Parallax continuous rotation
servos (see the right panel of Fig. 1.14), rather than standard servos.

Other motors

There are many different types of motors, in addition to standard DC motors and servo
motors. An example is the stepper motor, which is also a version of the DC motor,
namely one that moves in fixed angular increments, as the name implies. However, in
this course, only standard DC motors and servo motors will be considered.

1.4.4 Processors

Sensors and actuators are necessary for a robot to be able to perceive its envi-
ronment and to move or manipulate the environment in various ways. How-

163

CHAPTER 1. AUTONOMOUS ROBOTS 16

Figure 1.17: A Board of Education (BOE) microcontroller board, with a Basic Stamp Il (BS2)
microcontroller attached. In addition to the microcontroller, the BOE has a serial port for
communication with a PC (used, for example, when uploading a program onto the BS2), as
well as sockets for attaching sensors and electronic circuits. In this case, a simple circuit
involving a single LED, has been built on the BOE. The two black sockets in the upper right
corner are used for connecting up to four servo motors.

ever, in addition to sensors and actuators, there must also be a system for an- alyzing
the sensory information, making decisions concerning what actions to take, and
sending the necessary signals to the actuators.

In autonomous robots, it is common to use several processors to represent the
brain of the robot. Typically, high-level tasks, such as decision-making, are carried out
on a standard PC, for example a laptop computer mounted on the robot, whereas
low-level tasks are carried out by microcontrollers, which will now be introduced briefly.

Microcontrollers
Essentially, a microcontroller is a single-chip computer, containing a central

processing unit (CPU), read-only memory (ROM, for storing programs), random-
access memory (RAM, for temporary storage, such as program variables), and

164

CHAPTER 1. AUTONOMOUS ROBOTS 16!

several input-output (I/O) ports. There exist many different microcontrollers, with
varying degrees of complexity, and different price levels, down to a few USD for the
simplest ones. An example is the Basic Stamp II* (BS2) microcon- troller, which costs
around 50 USD.

While the BS2 is sulfficient for the experimental work carried out in this course (in
the next quarter), its speed is only around 4,000 operations per sec- ond (op/s) and it
has a RAM memory (for program variables) of only 32 bytes and a ROM (for program
storage) of 2 kilobytes (Kb).

However, many alternative microcontrollers are available for more advanced robots.
Two examples, with roughly the same price as the BS2, are the BasicX and ZBasic
microcontrollers, which are both compatible with the BOE micro- controller board used
together with the BS2. The BasicX microcontroller has a RAM memory of 400 bytes
and 32 Kb for program storage, whereas ZBasic has 4 Kb of RAM and 62 Kb for
program storage. BasicX executes around 83,000 op/s, whereas (some versions of)
ZBasic can reach up to 2.9 million op/s.

In many cases, microcontrollers are sold together with microcontroller boards (or
microcontroller modules), containing sockets for wires connecting the mi-
crocontroller to sensors and actuators as well as control electronics, power sup- ply

etc. An example is the Board of education (BOE) microcontroller board.

The BOE, shown in Fig. 1.17, is equipped with a solderless breadboard, on which
electronic circuits can be built without any soldering, which is very use- ful for
prototyping.

Since microcontrollers do not have human-friendly interfaces such as akeyboard
and a screen, the normal operating procedure is to write and compile programs on an
ordinary computer (using, of course, a compiler adapted for the microcontroller in
question), and then upload the programs onto the mi- crocontroller. In the case of the
BS2 microcontroller, the language is a version of Basic called PBasic.

Robotic brain architectures

An autonomous robot must be capable of both high-level and low-level pro- cessing.
The low-level processing consists, for example, of sending signals to motor controllers
(see below) which, in turn, send (for example) PWM pulses to servo motors. Another
low-level task is to retrieve raw data (e.g. a voltage value from an IR proximity sensor).
The distinction between low-level and high-level tasks is a bit fuzzy. For example, the
voltage value from an IR sen- sor (e.g. the Sharp GP2D12 mentioned above) can be
mapped to a distance value, which of course normally is more relevant for decision-
making than the raw voltage value. The actual conversion would normally be
considereda low-level task but might as well also be carried out on the robot’s onboard
PC.

4Basic Stamp is a registered trademark of Parallax, inc., see www.parallax.com.

165

http://www.parallax.com/

CHAPTER 1. AUTONOMOUS ROBOTS 16t

Laptop computer

lA A A A

: Laser range | Web
Microcontroller : g
finder cameras
A A A A A
Motor Wheel
Sonars
controller encoders
I I
Actuators
(motors)

Figure 1.18: An example of a typical robotic brain architecture, for a differentially steered
two-wheeled robot equipped with wheel encoders, three sonar sensors, one LRF, and two web
cameras.

The hardware configuration providing a robot’s processing capability is re- ferred to
as the robotic brain architecture. An example of a typical robotic brain architecture
is shown in Fig. 1.18. The robotic brain shown in the figure would be used in
connection with a two-wheeled differentially steered robot. As can be seen in the
figure, the microcontroller would handle low-level pro- cessing, such as measuring
the pulse counts of the wheel encoders, collecting readings from the three sonars,
and sending motor signals (e.g. desired set speeds) to the motor controller®, which,
in turn, would send signals to the motors. However, the LRF and the web cameras
would be directly connected, via USB (or, possibly, serial) ports, to the main processor
(on the laptop), since most microcontrollers would not be able to handle the massive
data flow from such sensors.

The main program (i.e. the robotic brain), running on the laptop, would process
the data from the various sensors. For example, the pulse countsfrom

°A separate motor controller (equipped with its own power source) is often used for robotics
applications, since the power source for the microcontroller may not be able to de- liver sufficient
current for driving the motors as well.

166

CHAPTER 1. AUTONOMOUS ROBOTS 16

Microcontroller (Basic Stamp 2)

‘| A A A A A

Servo :
Phototransistors Sonar i
MOtOrs Whiskers

Figure 1.19: An example of a robotic brain architecture for a Boe-bot.

the wheel encoders would be translated to an estimate of position and head- ing, as
described in Chapter 2. Given the processed sensory data, as well as in- formation
stored in the (long-term or short-term) memory of the robotic brain (for example, a
map of the arena in which the robot operates), the main pro- gram would determine
the next action to be carried out by the robot, compute the appropiate motor
commands and send them to the microcontroller.

Note that the figure only shows an example: Many other configurations could be
used as well. For example, there are cameras developed specifically for robotics
applications that, unlike standard web cameras, are able to carry out much of the
relevantimage processing (e.g. detecting and extracting faces), and then only sending
thatinformation (rather than the raw pixel values) to the laptop computer.

The robotic brain architecture shown in Fig. 1.18 would be appropriate for a rather
complex (and costly!) robot. Such robots are beyond the scope of the experimental
work carried out in the second half of this course. The ex- perimental work, which will
be carried out using a Boe-bot (see the left panel of Fig. 1.1), involves a much simpler
robotic brain architecture, illustrated in Fig. 1.19. As can be seen, in this case, the
robot has a single processor, namely the BS2 microcontroller, which thus is
responsible both for the low-level (sig- nal) processing and the high-level decision-
making.

The microcontroller sends signals to the two servo motors and receives in- put
from the sensors attached to the robot, for example, two photo-resistors, a sonar
sensor, and whiskers. The whiskers are simple touch sensors that give a reading of
either 0 (if no object is touched) or 1 (if the whisker touches an object). Of course,
other sensors (such as IR sensors or simple wheel encoders) can be added as well,
but one should keep in mind that the processing capabil- ity of the BS2 is very limited.
Note that no motor controller is used: The BOE is capable of generating sufficient
current for up to four Parallax servo motors.

167

o

Kinematics and dynamics

2.1 Kinematics

Kinematics is the process of determining the range of possible movements for a
robot, without consideration of the forces acting on the robot, but tak- ing into account
the various constraints on the motion. The kinematic equa- tions for a robot depend
on the robot’s structure, i.e. the number of wheels, the type of wheels used etc. Here,
only the case of differentially steered two- wheeled robots will be considered. For
balance, a two-wheeled robot must also have one or several supporting wheels (or
some other form of ground contact, such as a ball in a material with low friction). The
influence of the supporting wheels on the kinematics and dynamics will not be
considered.

2.1.1 The differential drive

A schematic view of a differentially steered robot is shown in Fig. 2.1. The Boe- bot
that will be considered in the second half of the course (see the left panel

Figure 2.1: A schematic representation of a two-wheeled, differentially steered robot.

21

CHAPTER 2. KINEMATICS AND DYNAMICS 16!

VT a
///?

v
—

Figure 2.2: Left panel: Kinematical constraints force a differentially steered robot to move in
a direction perpendicular to a line through the wheel axes. Right panel: For a wheel that rolls
without slipping, the equation v = wr holds.

of Fig. 1.1) is an example of such a robot.

A differentially steered robot is equipped with two independently steered wheels.
The position of the robot is given by the two coordinates x and y, and its direction of
motion is denoted ¢.

It will be assumed that the wheels are only capable of moving in the direc- tion
perpendicular to the wheel axis (see the left panel of Fig. 2.2). Furthermore, it will be
assumed that the wheels roll without slipping, as illustrated in the right panel of Fig.
2.2. For such motion, the forward speed v of the wheel is related to the angular velocity
o through the equation

vV = wr, (2.1)

where ris the radius of the wheel.

The forward kinematics of the robot, i.e. the variation of x, y and ¢, given the
speeds v, and v of the left and right wheel, respectively, can be obtained by using the
constraints on the motion imposed by the fact that the frame of the robot is a rigid
body. For any values of the wheel speeds, the motion of the robot can be seen as a
pure rotation, with angular velocity ® = ¢ around the instantaneous center of
rotation (ICR). Letting L denote the distance from the ICR to the center of the robot,
the speeds of the left and right wheels can be written

ve = w(L — R), (2.2)
and

ve = w(L + R), (2.3)

where R is the radius of the robot’s body (which is assumed to be circular and with a
circularly symmetric mass distribution). The speed V of the center-of-

169

CHAPTER 2. KINEMATICS AND DYNAMICS 171

mass of the robot is given by

V = wl. (2.4)
Inserting Eq. (2.4) into Egs. (2.2) and (2.3), L can be eliminated. V and » can then
be obtained in terms of v, and vz as

+
vV = u, (2.5)

2
w = _L—& (2.6)
2R
Denoting the speed components of the robot V, and V,, and noting that V, =
V cos ¢, V, = Vsin ¢, the position of the robot at time # is given by

11 ’.. 11

XO)— = v@d-= v+ ve® o s, (2.7)
X 0 X

I, I, 2
Y= -y par= MO G s0ar (2.8)
Y 0 144} Y 10

I 11 Itl 2_
z(tl) - w(dr = — Mdn (2.9)

70 70

2R

where (X,, Y1) is the starting position of the robot (at time ¢ = %), and ¢ is its initial
direction of motion. The position and heading together form the pose of the robot.
Thus, if vi.(#) and ve(z) are known, the position and orientation of the robot can be
determined for any time r. Numerical integration is normally required, since the
equations for X and Y can only be integrated analytically if ¢ has a rather simple
form. Two special cases, for which the three equa- tions can all be integrated
analytically, are (check!) (vi(2), ve(£)) = (vi, v2) and (vi(2), ve(r)) = (vo(t/11), vo(t/12)),
where v, v, v, 1 and . are constants. In these cases, one can first find ¢(z) (for
arbitrary 7), and then obtain X(r) and Y ().

Of course, in a real robot, the wheel speeds can never be determined with perfect
accuracy. Instead, the integration must be based on estimates v, () and v&(z), which,
in turn, are computed based on the pulse counts of the wheel encoders. There are
many factors limiting the accuracy of the speed estimates. One such limitation
concerns the number of pulses per revolution: For exam- ple, the wheel encoders
supplied by Parallax (for the Boe-bot) use the eight holes in the robot’s wheel for
generating pulse counts, so that a complete revo- lution of a wheel corresponds to only
eight pulses. Evidently, a speed estimate (which requires two different pulse readings,
at different times, as well as an estimate of the time elapsed between the two readings)
for such a robot would not be very accurate. By contrast, in more advanced robots,
the encoders may be mounted before the gear box (in the case of a DC motor), and
may also pro- vide much more than eight pulses per revolution (of the motor shaft),
so that a rather accurate wheel speed estimate can be obtained.

170

CHAPTER 2. KINEMATICS AND DYNAMICS 17

However, even if the speed estimates are very accurate, there are other sources
of error as well. For example, the robot’s wheels may slip occasionally. Furthermore,
the kinematic model may not provide a completely accurate es- timate of the robot’s
true kinematics (for example, no wheel is ever perfectly circular).

Once wheel speed estimates are available, the pose can be estimated, us- ing a
kinematic model as described above. The process of estimating a robot’s position and
heading based on wheel encoder data is called odometry. Due to the limited
accuracy of velocity estimates, the estimated pose of the robot will be subject to an
error, which grows with time. Thus, in order to maintain a sufficiently accurate pose
estimate for navigation over long distances, an in- dependent method of odometric
recalibration must be used. This issue will be considered in a later chapter.

Normally, the wheel speeds are not given a priori. Instead, the signals sent to the
motors by the robotic brain (perhaps in response to external events, such as detection
of obstacles) will determine the torques applied to the motor axes. In order to
determine the motion of the robot one must then consider not only its kinematics but
also its dynamcs. This will be the topic of the next section.

2.2 Dynamics

The kinematics considered in the previous section determines the range of pos- sible
motions for a robot, given the constraints which, in the case of the two- wheeled
differential robot, enforce motion in the direction perpendicular to the wheel axes.
However, kinematics says nothing about the way in which a particular motion is
achieved. Dynamics, by contrast, considers the motion of the robot in response to the
forces (and torques) acting on it. In the case of the two-wheeled, differentially steered
robot, the two motors generate torques (as described above) that propel the wheels
forward, as shown in Fig. 2.3. The fric- tional force at the contact point with the ground
will try to move the ground backwards. By Newton’s third law, a reaction force of the
same magnitude will attempt to move the wheel forward. In addition to the torque
from the motor (assumed to be known) and the reaction force F from the ground, a
re- action force p from the main body of the robot will act on the wheel, mediated by
the wheel axis (the length of which is neglected in this derivation). Using Newton’s
second law, the equations of motion for the wheels take the form

mv. = FL — p, (2.10)
mve = Fr — pr, (2.11)
Lo =1L — Frr, (2.12)

171

CHAPTER 2. KINEMATICS AND DYNAMICS 17.

Figure 2.3: Left panel: Free-body diagram showing one of the two wheels of the robot. Right
panel: Free-body diagram for the body of the robot and for the two wheels. Only the forces
acting in the horizontal plane are shown.

and

T.or = tr — Frr, (2.13)

where m is the mass of the wheel, I. is its moment of inertia, and r its radius.

It is assumed that the two wheels have identical properties. The right panel of Fig. 2.3
shows free-body diagrams of the robot and the two wheels, seen from above.
Newton'’s equations for the main body of the robot (mass M) take the form

MV = pr + pr (2.14)
and

1 = (—pL+pr)R, (2.15)

where I is its moment of inertia.

In the six equations above there are 10 unknown variables, namely v., v, Fi, Fg,
pL, PR, L, Pr, V , and ¢. Four additional equations can be obtained from kinematical
considerations. As noted above, the requirement that the wheels should roll without
slipping leads to the equations

VL = rog (2.16)

and
VR = rQR. (2.17)
Furthermore, the two kinematic equations (see Sect. 2.1)

+
y = LTI’ (2.18)

172

CHAPTER 2. KINEMATICS AND DYNAMICS

17.

173

CHAPTER 2. KINEMATICS AND DYNAMICS 17

and

p= — . (2.19)
2R

complete the set of equations for the dynamics of the differentially steered robot.
Combining Eq. (2.10) with Eq. (2.12) and Eq. (2.11) with Eq. (2.13), the equations

m\'}L — TL _l\v(DL p B (2.20)
- L
.
_ TR _lwg;R
mg - P, (2.21)
r

are obtained. Inserting the kinematic conditions from Egs. (2.16) and (2.17), p.

and pr can be expressed as i 5
L L, .
p="— —+tm v (2.22)
L r 72 L
and
. s . (2.23)
_wr o Lw
PR= 4 o
1%
R

Inserting Egs. (2.22) and (2.23) in Eq. (2.14), one obtains the acceleration of the
center-of-mass of the robot body as - 2

My = P tp = - +m
(22 + r) I, +v)= (2.24)
L R
r)
L R
] b3
(zp +7r)

7 .
= SR o Wy,
r 72

where, in the last step, the derivative with respect to time of Eq. (2.18) has been used.
Rearranging terms, one can write Eq. (2.24) as

MV =A (. + r), (2.25)
where
1
A= ; —22 (2.26)

174

CH%T%Q%'WEW@M%EH%W?&d 2 23)‘ Eq. (2. 1§ (can be e>5presse(c]2 %37)

I¢=(—p +p)R=(—7 +7 - +m ,

R L.

L R L R
r 72

Differentiating Eq. (2.19) with respect to time, and inserting the resulting ex- pression
forve ve in Eq._(2.27), one obtains the equation for the angular motion as
p

I1¢ = (-1 + 18) LT 2R 72 +m . (2.28)
r

175

CHAPTER 2. KINEMATICS AND DYNAMICS 171

Rearranging terms, this equation can be expressed in the form

1$ = B(— + x), (2.29)
where 1
B = _ . (2.30)
. >
r IwR mRr
_R + 2 Ir + 1

Due to the limited strength of the motors and to friction, as well as other losses (for
instance in the transmission), there are of course limits on the speed and rotational
velocity of the robot. Thus, the differential equations for V and ¢ should also include
damping terms. In practice, for any given robot, the exact form of these terms must be
determined through experiments (i.e. through sys- tem identification). A simple
approximation is to use linear damping terms, so that the equations of motion for the
robot become

yy TaV =A (7o +), (2.31)

and

I1$+Pdp=B(—u+1w), (2.32)

where o and g are constants. Note that, if the mass m and moment of inertia 7., of
the wheels are small compared to the mass M and moment of inertia I of the robot,
respectively, the expression for A can be simplified to

A= _, (2.33)
r

Similarly, the expression for B can be simplified to

=" (2.34)

r

Given the torques 7, and zx generated by the two motors in response to the signals
sent from the robotic brain, the motion of the robot can thus be obtained by integration
of Egs. (2.31) and (2.32).

176

CHAPTER 2. KINEMATICS AND DYNAMICS

17

177

87

~Simulation efautornromotsrobots

Simulations play an important role in research on (and development of) auto- nomous
robots, for several reasons. First of all, testing a robot in a simulated environment can
make it possible to detect whether or not the robot is prone to catastrophic failure in
certain situations, so that the behavior of the robot can be altered before it is
unleashed in the real world. Second, building a robot is often costly (for example,
most laser range finders cost several thousand USD). Thus, through simulations, it is
possible to test several designs before constructing an actual robot. Furthermore, it is
common to use stochastic opti- mization methods, such as evolutionary algorithms, in
connection with the de- velopment of autonomous robots. Such methods require that
many different robotic brains be evaluated, which is very time-consuming if the work
must be carried out in an actual robot. Thus, in such cases, simulations are often
used, even though the resulting robotic brains must, of course, be thoroughly tested
in real robots, a procedure which often requires several iterations involving simulated
and actual robots. In this chapter, an introduction to some of the general issues
pertaining to robotic simulations will be given, along with a brief description of (some
of) the features of two particular simulators for mo- bile robots, namely GPRSim and
ARSim. GPRSim is an advanced 3D simulator for automomous robots, which is used
in certain research projects within the Adaptive systems group. ARSim is a simplified
(2D) Matlab simulator used in this course.

3.3 Simulators

Over the years, several different simulators for mobile robots have appeared, with
varying degrees of complexity. One of the most ambitious simulators to date is
Robotics studio from Microsoft, which allows the user to simulate many of the
commercially available mobile robots, or even to assemble a (vir-

29

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 17!

tual) robot using generic parts.

Some simulators include not only general simulation of the kinematic and
dynamics of robots, but also procedures for stochastic optimization. Some ex- amples
of such simulators are wWebots, which is manufactured by Cyberbotics
(www.cyberbotics.com) and the open source package Darwin2K, which can be
found at darwin2k.sourceforge.net.

The Adaptive systems research group at Chalmers has developed a simu- lator
called the General-purpose robotic simulator (GPRSim), which is exten- sively used
in our research projects. Unlike the other simulators mentioned above, GPRSIim
features, as an integral part of the simulator, an implementa- tion of the general-
purpose robotic brain structure (GPRBS) (also developed in the Adaptive systems
research group). The GPRBS, in turn, consists of a standardized representation of a
robotic brain, consisting of a set of so called brain processes as well as a decision-
making system. This structure allows re- searchers to build complex robotic brains
involving many different behavioral aspects and also to export the resulting robotic
brain for use in real (physical) robots. The existence of a standardized representation
for robotic brains also makes it possible, for example, to reuse parts of a previously
developed robotic brain in other applications than the original one.

However, GPRSIm is primarily a research tool and, as such, it is not very user-
friendly. Moreover, the underlying code is quite complex. Thus, in this course, a
different simulator will be used, namely the Autonomous robot sim- ulator (ARSim),
which is a 2D simulator written in Matlab. This simulator is generally too slow to be
useful in research projects, but it is perfectly suited to most of the tasks considered in
this course. Note also that, even though ARSIim is greatly simplified, many parts of the
code (for example the simulation of DC motors, IR sensors etc.) are essentially the
same in GPRSim and ARSIim

3.4 General simulation issues

In Fig. 3.1, the general flow of a single-robot simulation is shown. Basically, after
initialization, the simulation proceeds in a stepwise fashion. In each step, the simulator
reads the sensors of the robot, and the resulting signals are sent to the robotic brain,
which computes appropriate motor signals that, finally, are sent to the motors. Given
the motor signals, the acceleration of the robot can be updated, and new velocities
and positions can be computed. Changes to the arena (if any) are then made, and the
termination criteria are checked.

3.4.1 Timing of events

As mentioned earlier, simulation results in robotics must be validated in an actual
robot. However, in order for this to be possible, some care must be

179

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18I

\ 4

Initialize 'y 1. Obtain sensor readings

v

2. Process information

v

3. Compute motor signals

v

4. Move robot

v

5. Update arena

v

6. Check termination criteria

Figure 3.1: The flow of a single-robot simulation. Steps 1 through 6 are carried out in each
time step of the simulation.

taken, particularly regarding steps 1-3. To be specific, one must make sure that these
steps can be executed (on the real robot) in a time which does not exceed the time
step length in the simulation. Here, it is important to distinguish between two different
types of events, namely (1) those events that take a long time to complete in simulation,
but would take a very short time in a real robot, and (2) those events that are carried
out rapidly in simulation, but would take a long time to complete in a real robot.

An example of an event of type (1) is collision-checking. If performed in a
straight-forward, brute-force way, the possibility of a collision between the (circular,
say) body of the robot and an object must be checked by going through all lines in a
2D-projection of the arena. A better way (used, for ex- ample, in GPRSim) is to
introduce an invisible grid, and only check for colli- sions between the robot and those
objects that (partially) cover the grid cells that are also covered by the robot. However,
even when such a procedure is used, collision-checking may nevertheless be very
time-consuming in simula- tion whereas, in a real robot, it amounts simply to reading a
bumper sensor (or, as on the Boe-bot, a whisker), and transferring the signal (which, in
this case, is binary, i.e. a single bit of information) from the sensor to the brain of the
robot. Events of this type cause no (timing) problems at the stage of transferring the
results to a real robot, even though they may slow down the simulation con- siderably.

An example of an event of type (2) is the reading of sensors. For exam- ple, an IR
sensor can be modelled using simple ray-tracing (see below) and, provided that the
number of rays used is not too large, the update can be car-

180

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18

Process information, Transfer motor
A compute motor output signals

Read Read
first IR second IR
sensor sensor

A
A\

Ot

Figure 3.2: A timing diagram. The boxes indicate the time required to complete the corre-
sponding event in hardware, i.e. a real robot. In order for the simulation to be realistic, the
time step At used in the simulation must be longer than the total duration (in hardware) of all
events taking place within a time step.

ried out in a matter of microseconds in a simulator. However, in a real robot it might
take longer time. While the reading of an IR sensor involves a very limited signal flow
compared to the reading of a camera with, say, 640 480 pixels, the transfer g¢f the
reading from the sensor to the robotic brain is a po- tential bottleneck. A common
setup is to have a microcontroller (see Chapter

1) handling the low-level communication, i.e. obtaining sensor readings and sending
signals to actuators, and a PC (for example, a laptop placed on the robot) handling
high-level issues, such as decision-making, motion planning etc. Very often, the
communication between the laptop and the microcontroller takes place through a serial
port, operating with a speed of, say, 9600 or 38400 bits/s. If the onboard PC must
read, for example, four proximity sensors (as- suming one byte per reading) and send
signals to two motors (again assuming that each signal requires one byte), a total of
6 8 = 48 bits is needed, lim- iting the number of interactions between the PC and the
microcontroller to 960048 = 200 per second in thecase of a serial port speed of
9600 bits/s. As another, more specific, example, consider the small mobile robot
Khepera, shown in the left panel of Fig. 1.5. Inits standard configuration, it is equipped
with eight IR sensors, which are read in a sequential way every 2.5 ms, so that the
processor of the robot receives an update of a given IR sensor’s reading every 20 ms.
The updating frequency of the sensors is therefore limited to 50 Hz. Thus, a simulation
of a Khepera robot in which the simulated sensors are updated with a frequency of,
say, 100 Hz would be unrealistic.

In practice, the problem of limited updating frequency in sensors can be solved by
introducing a Boolean readability state for each (simulated) sensor. Thus, in the case
of a Khepera simulation with a time step of 0.01s, the sensor values would be updated
only every other time step. Step 2, i.e. the processing of information by the brain of the
robot, must also, in a realistic simulation, be of limited complexity so that the three
steps (1, 2, and 3) fogether can be carried

181

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18.

out within the duration At (the simulation time step) when transferred to the real robot.
An example of a timing diagram for a generic robot (not Khepera) is shown in Fig. 3.2.
In the case shown in the figure, two IR proximity sensors are read, the information is
processed (for example, by being passed through an artificial neural network), and
the motor signals (voltages, in the case of standard DC motors) are then transferred
to the motors. The figure shows a case which could be realistically simulated, with the
given time step length

At. However, if two additional IR sensors were to be added, the simulation would
become unrealistic: The real robot would not be able to complete all steps during the
time Ar.

For the simple robotic brains considered in this course, step 2 would gener- ally be
carried out almost instantaneously (compared to step 1) in a real robot. Similarly, the
transfer of motor signals to a DC motor is normally very rapid (note, however, that the
dynamics of the motors may be such that it is pointless to send commands with a
frequency exceeding a certain threshold).

To summarize, a sequence of events that takes, say, several seconds per time
step to complete in simulation (e.g. the case of collision-checking in a very complex
arena) may be perfectly simple to transfer to a real robot, whereas a sequence of
events (such as the reading of a large set of IR sensors) that can be completed almost
instantaneously in a simulated robot, may simply notbe transferable to a real robot,
unless a dedicated processor for signal processing and signal transfer is used.

3.4.2 Noise

Another aspect that should be considered in simulations is noise. Real sensors and
actuators are invariably noisy, on several levels. Furthermore, even sen- sors that are
supposed to be identical often show very different characteristics in practice. In
addition, regardless of the noise level of a particular sensor, the frequency with which
readings can be updated is limited, thus introducing another source of noise, in certain
cases. For example, the limited sampling frequency of wheel encoders implies that,
even in the (unrealistic) case where the kinematic model is perfect and there are no
other sources of noise, the in- tegrals in the kinematic equations (Egs. (2.7)-(2.9)) can
only be approximately computed.

Thus, in any realistic robot simulation, noise must be added, at all relevant levels.
Noise can be added in several different ways. A common method (used in GPRSIm
and ARSIim) is to take the original reading S of a sensor and add noise to form the

actual reading S as

S =SN(1, o), (3.1)

where N(1, o) denotes the normal (Gaussian) distribution with mean 1 and

182

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18.

standard deviation ¢. Of course, other distributions (e.g. a uniform distribu- tion) can
be used as well.

An alternative method is to take some measurements of a real sensor and store
the readings in a lookup table, which is then used by the simulated robot. For example,
in the case of an IR sensor with a range of, say, 0.5 m, one may, for example, take 10
readings each at distances of 0.05, 0.10, . .., 0.50 m, and store those readings in a
matrix. In the simulator, when the IR sensor is used, the distance L to the nearest
obstacle is determined, and the reading is then obtained by interpolating linearly
between two samples from the lookup table. For example, if L = 0.23 m, a randomly
chosen sample s» is taken from the 10 readings stored for L = 0.20 m, and another
randomly chosen sample s is taken from the readings stored for L = 0.25 m. The
reading of the simulated sensor is then taken as

$_5 . 023—-020,. _
+ O (3.2)

0 025-020 %

This method has the advantage of forming simulated readings from actual sensor
readings, rather than introducing a model for the noise. Furthermore, using lookup
tables, it is straightforward to account for the individual nature of supposedly identical
sensors. However, a clear disadvantage is the need for generating the lookup tables,
which often must contain a very large number of samples taken not only at various
distances, but also, perhaps, at various angles between the forward direction of the
sensor and the surface of the obstacle. Thus, the first method, using a specific noise
distribution, is normally used instead.

3.4.3 Sensing

In addition to correct timing of events and the addition of noise in sensors and
actuators, it is necessary to make sure that the sensory signals received by the
simulated robot do not contain more information than could be provided by the
sensors of the corresponding real robot. For example, in the simulation of a robot
equipped only with wheel encoders (for odometry), it is not allowed to provide the
simulated robot with continuously updated and error-free po- sition measurements.
Instead, the simulated wheel encoders, including noise and other inaccuracies, should
be the only source of information regarding the position of the simulated robot.

In both GPRSim and ARSim, several different sensors have been imple- mented,
namely (1) wheel encoders, (2) IR proximity sensors, and (3) com- passes. In
addition, GPRSim (but not ARSim) also features (4) sonar sensors and (5) laser range
finders (LRFs). An important subclass of (simulated) sen- sors are ray-based
sensors, which use a simple form of ray tracing in order to

183

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18

form their reading(s). Examples of ray-based sensors are IR proximity sensors, sonar
sensors, and laser range finders.

Now, the different natures of, say, an IR sensor, which gives a fuzzy read- ing
based on infrared light, and an LRF, which gives very accurate readings (in many
directions) based on laser light, imply that slightly different procedures must be used
when forming the (simulated) sensor readings of those twosen- sor types. However,
in both cases, the simulation of the sensor requires ray tracing, which will now be
considered.

Ray-based sensors In ray-based sensors, the formation of sensor readings is
based on the concept of sensor rays. Basically, a number of rays are sent out from
a sensor, in various directions (depending on the opening angle of the sensor), and
the distance to the nearest obstacle is determined. If no ob- stacle is available within
the range of the sensor, the ray in question provides no reading. Of course, in order
to obtain any ray reading, not only the robot must be available, but also the objects
(e.g. walls and furniture) located in the arena in which the robot is operating. In
GPRSIim, objects are built from boxes and cylinders. Boxes are represented as a
sequence of six planes, whereas (the mantle surface of) cylinders are represented by
a sufficient number of planes (usually around 10-20) to approximate the circular cross
section of the cylinder. The ray readings are thus obtained using general equations
for line- plane intersections'. Here, however, we shall only consider the simpler two-
dimensional case, in which all surfaces are vertical and where the sensors are
oriented such that all emitted rays are parallel to the ground. In such cases, the arena
objects can be represented simply as a sequence of lines in two dimen- sions. Indeed,
this is how objects are represented in ARSIim.

An example of such a configuration is shown in Fig. 3.3. The left panel shows a
screenshot from GPRSim, in which an LRF mounted on top of a robot takes a reading
in an arena containing only walls. The right panel shows a two- dimensional
representation of the arena and the LRF (the body of the robot is not shown). Given
the exact position of a ray’s starting point, as well as the range of the corresponding
sensor, it is possible to determine the distance be- tween the ray and the nearest
obstacle using general equations for line-line intersection, which will be described
next. However, it should first be noted that, even though the simulator of course uses
the exact position of the robot and its sensors in order to compute sensor readings,
the robot (or, more specif- ically, its brain) is only provided with information regarding
the actual sensor readings.

Consider now a single sensor ray. Given the start and end points of the

In order to speed up the simulator, a grid (also used in collision checking) is used, such that only
those obstacles that are (partially) located in the grid cells currently covered by the sensor are
considered.

184

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18!

Figure 3.3: Left panel: A screenshot from GPRSim, showing an LRF taking a reading in an
arena containing only walls. Right panel: A two-dimensional representation of the sensor
reading. The dotted ray points in the forward direction of the robot which, in this case, coincides
with the forward direction of the LRF.

ray, its equation can be determined. Let (x. y.) denote the start point for the ray (which
will be equal to the position of the sensor, if the size of the latter can be neglected).
Once the absolute direction (8;) of the sensor ray has been determined, the end point
(x,, y) of an unobstructed ray (i.e. one that does not hit any obstacle) can be obtained

as
(xv, y») = (x. + D cos B, y. + D sin j3), (3.3)

where D denotes the sensor range. Similarly, any line corresponding to the side of an
arena object can be defined using the coordinates of its start and end points. Note
that, in Fig. 3.3, all lines defining arena objects coincide with coordinate axes, but this
is, of course, not always the case. Now, in the case of two lines of infinite length,
defined by the equations yr = ¢ + dwx, kK = 1, 2, it is trivial to find the intersection
point (if any) simply by setting y: = y.. However, here we are dealing with line segments
of finite length. In this case, the intersection point can be determined as follows:
Letting P* = (&, y*) and

P’ = (x, y") , denote the start and end points, respectively, of line i, i = 1, 2,

i i i

the equations for an arbitrary point P; along the two line segments can be

written . z
P=P+r P-P, (3.4)
1 1 1
and
R >
P, = P62+ u sz— P"‘Z, (3.5)

185

C%ﬁJrEF&?’u)SMULﬁTQN.FP& tﬁyg%@M%g iqut-'é%d u gives, after some 18

186

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18

algebra,
L= =0 = ¥ — 05—) - x) (3.6)
0P = ¥ = x) = (2 = ¥ —)
and ? 2! : ’ 2 :
L= @= 00— ¥y = 0=)G - x) (3.7)
%ﬁ =0 = ¥) = G = xIO° —

An intersection occurs if both t and u are in the range [0, 1]. Assuming that the first
line (with points given by P.) is the sensor ray, the distance d between the sensor and
the obstacle, along the ray in question, can then easily be formed by simply
determining P. using the 7 value found, and computing

d= P, — P| = |«(P° — P)|. (3.8)

If the two lines happen to be parallel, the denominator becomes equal to zero?. Thus,
this case must be handled separately.

In simulations, for any time step during which the readings of a particular sensor
are to be obtained, the first step is to determine the origin of the sensor rays (i.e. the
position of the sensor), as well as their directions. An example is shown in Fig. 3.4.
Here, a sensor is placed at a point p;, relative to the center of the robot. The absolute
position P (relative to an external, fixed coordinate system) is given by

P.=X +p, (3.9)

where X = (X, Y) is the position of the (center of mass of the) robot. Assuming that the
front direction of the sensor is at an angle « relative to the direction of heading (¢) of
the robot, and that the sensor readings are to be formed using N equally spaced rays
over an opening angle of y, the absolute direction g; of the i" ray equals

Bi=¢+a— 2+(i— 1)0y, (3.10)
where dy is given by Y
Y
oy = —. 3.11
7= (3.11)
1

Now, the use of the ray readings differs between different simulated sensors. Let us
first consider a simulated IR sensor. Here, the set of sensor rays is used only as an
artificial construct needed when forming the rather fuzzy reading of such a sensor. In
this case, the rays themselves are merely a convenient com- putational tool. Thus, for
IR sensors, the robotic brain is not given information regarding the individual rays.
Instead, only the complete reading S'is pri)— vided, and it is given by

N

g1
> (3.12)

187

CWZ&%&@&WEQ&U%‘N&? ﬁ%HWQMQMQH%ﬁQﬁQI{% the numerators and the 18t

denominators are equal to zero in the equations for t and u.

188

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 18!

Figure 3.4: The right panel shows a robot equipped with two IR sensors, and the left panel
shows a blow-up of the left sensor. In this case, the number of rays (N) was equal to 5. The
leftmost and rightmost rays, which also indicate the opening angle y of the IR sensor are shown
as solid lines, whereas the three intermediate rays are shown as dotted lines.

where p; is the ray reading of ray i. |deally, the value of N should be very large for the
simulated sensor to represent accurately a real IR sensor. However, in practice, rather
small values of N (3-5, say) is used in simulation, so that the reading can be obtained
quickly. The loss of accuracy is rarely important, since the (fuzzy) reading of an IR
sensor is normally used only for proximity detec- tion (rather than, say, mapping or
localization). An illustration of a simulated IR sensor is given in Fig. 3.4.
A common phenomenological model for IR sensor readings (used in GPRSim and

ARSim) defines p; as s s

p =min a.,. cosx,1 , (3.13)
d
i 2 2 i

i

where ¢ and ¢; are non-negative constants, d; > o is the distance to the nearest object
along ray i, and

Ki=—yp + (i— 1)oy, (3.14)

is the relative ray angle of ray i. If d; > D (the range of the sensor), p; = 0. Note that
it is assumed that x; [=2, n2], i.e. the opening angle cannot exceed = radians.
Typical opening angles are =2 or fess. It should also be noted that this IR sensor
model has limitations; for example, the model does not take into account the
orientation of the obstacle’s surface (relative to the direction of the sensor rays) and
neither does it account for the different IR reflectivity of different materials.

For simulated sonar sensors (which are included in GPRSim but not in AR- Sim),
the rays are also only used as a convenient computational tool, but the

189

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 19

final reading S is formed in a different way. Typically, sonar sensors give rather accurate
distance measurements in the range [Dui,, Dxa], but sometimes fail to give a reading
at all. Thus, in GPRSim, the reading of a sonar sensor is formed as S = min;d; with
probability p and D... (no detection) with proba- bility 1 p. Also, if § < D.. the reading
is set to D... Typically, the value of p is very close to 1. The number of rays (V) is
usually around 3 for simulated sonars.

A simulated LRF, by contrast, gives a vector-valued reading, S, where each
component S; is obtained simply as the distance d; to the nearest obstacle along the
ray. Thus, for LRFs, the sensor rays have a specific physicalinterpretation, made
possible by the fact that the laser beam emitted by an LRF is very narrow. In GPRSim,
if di > D, the corresponding laser ray reading is set to -1, to indi- cate the absence of
any obstacle within range of the ray in question. Note that LRFs are only implemented
in GPRSim. It would not be difficult to add such a sensor to ARSim, but since an LRF
typically takes readings in 1,000 different directions (thus requiring the same number
of rays), such sensors would make ARSIim run very slowly.

As a final remark regarding ray-based sensors, it should be noted that a given
sensor ray i may intersect several arena object lines (see, for example, Fig. 3.3) In
such cases, d; is taken as the shortest distance obtained for the ray.

3.4.4 Actuators

A commonly used actuator in mobile robots is the DC motor. The equations describing
such motors are given in Chapter 1.

In both GPRSim and ARSim, a standard DC motor has been implemented. In this
motor, the input signal is the applied voltage. Both the electrical and mechanical
dynamics of the motors are neglected. Thus the torque acting on the motor shaft
axis is given by Egs. (1.8) and (1.9). Gears are imple- mented in both simulators, so
that the torques acting on the wheels are given by Egs. (1.10). However, the
simulators also include the possibility of setting a maximum torque .. which cannot
be exceeded, regardless of the output torque .. obtained from Egs. (1.10).

In addition, GPRSim (but not ARSim) also allows simulation of velocity-
regulated motors. Unlike the voltage signal used in the standard DC motor, a
velocity-regulated motor takes as input a desired reference speed v.: for the wheel
attached to the motor axis. The robot then tries to reach this speed value, using
proportional control. The actual output torque of a velocity-regulated motor is given
by

T =K Vet — V) (3.15)

In this model, a change in v.: generates an immediate change in the torque. In a real
motor, the torques cannot change instantaneously. However, Eq. (3.15)

190

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 19

Figure 3.5: Left panel: A simulated robot (from GPRSim), consisting of more than 100 objects.
Right panel: An example (in blue) of a collision geometry.

usually provides a sufficiently accurate estimate of the torque. As in the case of the
standard DC motor, there is also a maximum torque ... for velocity- regulated motors.

Note that, if velocity-regulated motors are to be used, the robot must be equipped
with wheel encoders to allow the computation of odometric esti- mates of the wheel
speeds.

3.4.5 Collision checking

A real robot should normally be very careful not to collide with an obstacle (or, worse, a
person). In simulations, however, one may allow collisions, for exam- ple during
simulations involving stochastic optimization, where the robotic brains in the early
stages of an optimization run may be unable to avoid colli- sions. In any case,
collisions should, of course, be detected.

In GPRSIim the concept of a collision geometry is used when checking for
collisions. The collision geometry is a set of vertical planes in which the body of the
robot should be contained. It would be possible to check collisions be- tween the
boxes and cylinders constituting the (simulated) body of the robot. However, it is
common that the robotic body consists of a very large number of objects, making
collision-checking very slow indeed. Thus, instead, a sim- pler collision geometry is
used. An example is given in Fig. 3.5. The left panel shows a simulated robot
(consisting of more than 100 separate objects), and the right panel shows (in blue) a
collision geometry for the same robot.

By contrast, in ARSim the simulated robot is always represented as a circu- lar
disc. Thus, the collision detection method simply checks for intersections

191

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 19

between the circular body of the robot and any line representing a side of an arena
object.

3.4.6 Motion

Once the torques acting on the wheels have been generated, the motion of the robot
is obtained through numerical integration of Egs. (2.31) and (2.32). In both GPRSim
and ARSim, the integration is carried out using simple first-
order (Euler) integration. For each time step, V and ¢ are computed using
Egs. (2.31) and (2.32), respectively. The new values V/ and ¢/ of V and ¢ are then
computed as i

VIi=Vv+ VA, (3.16)

& = ¢+ pAL, (3.17)

where At is the time step length (typically set to 0.01 s). The value of ¢ is then updated,
using the equation

¢ = ¢+ dA (3.18)
The cartesian components of the velocity are then obtained as

VI =VJicosd, (3.19)

VyJ = VJsin ¢. (3.20)

Finally, given v/ and v/, the new positions X’ and ¥/ can be computed as
X =X+ VA, (3.21)

Y/ =Y + V/At (3.22)

In addition, if wheel encoders are used, both GPRSim and ARSim also keep track of
the rotation of each wheel, for possible use in odometry (if available).

3.4.7 Robotic brain

While the physical components of a robot, such as its sensors and motors, of- ten
remain unchanged between simulations, the robotic brain must, of course, be adapted
to the task at hand. Robotic brains can be implemented in many different ways.

In behavior-based robotics (BBR) the brain of a robot is built from a reper- toire
(i.e. a set) of basic behaviors, as well as a decision-making procedure, selecting which
behavior(s) to activate at any given time. In the General- purpose robotic brain
structure (GPRBS), developed in the author’s research group, the robotic brain is
built from a set of brain processes, some of which

192

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 19,

are motor behaviors (that make use of the robot’s motors) and some of which are
cognitive processes, i.e. processes that do not make use of any motors. In addition,
GPRBS features a decision-making system based on the concept of utility. One of the
main properties of GPRBS is that this structure allows sev- eral processes to run in
parallel, making it possible to build complex robotic brains. In fact, the specific aim of
the development of GPRBS is to move be- yond the often very simple robotic brains
defined within standard BBR.

In GPRBS, all brain processes are specified in a standardized format, which
simplifies the development of new brain processes, since many parts of an already
existent process often can be used when writing a new process. How- ever, at the
same time, GPRBS (as implemented in GPRSIim) is a bit complex to use, especially
since it is intended for use in research, rather than as an edu- cational tool. Thus, in
this course, ARSIim will be used instead. This simulator allows the user to write simple
brain processes (as well as a basic decision- making system) in any desired format
(i.e. without using GPRBS). Methods for writing brain processes will be described
further in a later chapter.

3.3 Brief introduction to ARSIim

The simplest way to acquaint oneself with ARS imis to run and analyze the test program
distributed with the program. In order to do so, start Matlab, move to the right directory
and write

>> TestRunRobot

and press return. The robot appears in a quadratic arena with four walls and two
obstacles, as shown in Fig. 3.6. The robot is shown as a circle, and its di- rection of
motion is indicated by a thin line. The IR sensors (of which there are two in the default
simulation) are shown as smaller circles. The rays used for determining the sensor
readings (three per sensor, per default) are shown as lines emanating from the
sensors. In the default simulation, the robot executes 1,000 time steps of length 0.01
s, unless it is interrupted by a collision with an obstacle or a wall.

The flow of the simulation basically follows the structure given in Fig. 3.1. The first
lines of code in the TestRunRobot .mfile are devoted to adding the various ARSim
function libraries to Matlab’s search path. The arena objects are then created and
added to the arena. Next, the brain of the robot is created (by a callto CreateBrain),
and the setup is completed by creating the sensors and motors, and adding them to
the robot.

Before the actual simulation starts, the robot’s position, heading, velocity, and
angular speed are set, and the plot of the arena (including the robot) is created.
Optionally, a variable motionResults, storing information about

193

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 19

Figure 3.6: Atypical screenshot from an ARSim simulation. The black lines emanating from
the two IR proximity sensors of the robot are the rays used for determining sensor readings.

the robot’s motion, can be created.

ARSim then executes the actual simulation. Each time step begins with the
sensors being read. First, the readings of all ray-based sensors (a category in which
only IR sensors have been implemented in ARSim, so far) are obtained. Next, the
odometer and compass readings are obtained (provided, of course, that the robot is
equipped with those sensors. Next, the robotic brain processes the sensory
information (by executing the BrainStep function), producing motor signals, which
are used by the MoveRobot function. Finally, a collision check is carried out.

In normal usage, only a few of ARSim’s functions need be modified, namely
CreateBrain, in which the parameters of the brain are set, BrainStep, which
determines the processing carried out by the robotic brain, and, of course, the main file
(i.e. TestRunRobot in the default simulation), where the setup of the arena and the
robot are carried out. Normally, no other Matlab func- tions should be modified unless,
for example, one wants to modify the plot procedure.

Note that, by default, the rays involved in the computation of the IR sensor readings
are not plotted. In order to plot the sensor rays, one must set the pa- rameter
ShowSensorRaysto true. If the robot is equipped with an odome- ter, one can plot
also the position and heading estimated by the odometer, by setting the parameter
ShowOdometricGhost totrue. A brief description of the Matlab functions contained
in ARSimis given in Appendix A.

194

CHAPTER 3. SIMULATION OF AUTONOMOUS ROBOTS 19!

195

4

~ARimal behavior

The behavior-based approach to robotics is strongly influenced by animal be- havior.
Before studying robotics, it is therefore appropriate to learn some of the basics of this
topic. Of course, animal behavior is a vast topic, and in this chapter we shall only
study a few examples.

Two important examples are decision-making, which will be introduced briefly in
Subsect. 4.4.2 below, and navigation, which is considered in Sub- sect. 4.4.4.

4.1 Introduction and motivation

Animal behavior is important as a source of inspiration for all work involv- ing
autonomous robots. Animals are able to function more or less perfectly in their
environment, and to adapt to changes in it. Models of animal behav- ior, both low-level
models involving individual neurons, and high-level phe- nomenological models, can
serve as an inspiration for the development of the corresponding behavior in robots.
Furthermore, animals are generally experts in allocating time in an optimal or near-
optimal fashion to the many activities (such as eating, sleeping, drinking, foraging etc.)
that they must carry out in various circumstances, and lessons concerning behavior
selection in animals can give important clues to the solution of similar problems in
robotics.

It should be noted that, in the behavior-based approach to robotics (intro- duced
in detail in Chapter 5) one uses a more generous definition of intelligent behavior than
in classical artificial intelligence, which was strongly centered on high-level behavior
(e.g. reasoning about abstract things) in humans. By contrast, in behavior-based
robotics, simple behaviors in animals, such as re- flexes and gradient-following (taxis),
play a very important role, as will be seen during this course.

45

CHAPTER 4. ANIMAL BEHAVIOR 19

4.2 Bottom-up approaches vs. top-down approaches

As is the case with many different topics in science, animal behavior can be studied
using either a bottom-up approach or a top-down approach. The bottom-up
approach can, in principle, lead to a more complete and detailed understanding of the
objects or organisms under study. However, in suffi- ciently complex systems, the
bottom-up approach may fail to give important insights. For example, when using a
computer, it is not necessary to know ex- actly how the computer manipulates and
stores information down to the level of individual electrons. Even without such detailed
knowledge, it is certainly possible to use the computer, if only one has information
regarding how to program it.

Similarly, in animal behavior, even very simple, top-down models can lead to a
good understanding of seemingly complex behavior, as will be shown below in the
example of the orientation of bacteria.

On the other hand, a bottom-up study (on the level of individual neurons) can
reveal many important aspects of relatively simple animals, such as e.g. the much-
studied worm C. Elegans or the sea-slug Aplysia. The neural level is relevant also in
the field of autonomous robotics, where simple behaviors are often implemented
using neural network architectures. However, in such cases, the networks are most
often used as black-box models (obtained, for example, by means of artificial
evolution).

4.3 Nervous systems of animals

In essence, the brain of vertebrates consists of three structures namely, the fore- brain,
the midbrain, and the hindbrain. The central nervous system (CNS) consists of
the brain and the spinal cord. In addition to the CNS, there is the peripheral nervous
system, which consists of sensory neurons that carry in- formation to the CNS and
motor neurons that carry motor signals from the CNS to muscles and glands (see
below). The peripheral nervous system can be sub-divided into the somatic nervous
system, that deals with the external environment (through sensors and muscles) and
the autonomic nervous sys- tem which provides the control of internal organs such
as the heart and lungs. The autonomic nervous system is generally associated with
involuntary ac- tions, such heart beat and breathing.

Itis interesting to note that the embryological development of different ver- tebrates
is quite similar: During development, a neural tube is differentiated into a brain and a
spinal cord.

Note that the presence of a nervous system is not a prerequisite for all forms of
intelligent behavior: Even single-celled organisms (which, clearly, cannot contain a
CNS: Neurons are cells), are able to exhibit rudimentary intelligent

197

CHAPTER 4. ANIMAL BEHAVIOR 19

behavior. An example involving bacteria will be given below.

In addition to the nervous system, there is a parallel system for feedback in the
body of animals, namely the endocrine system. The glands of the en- docrine
system release hormones (into the blood stream) that influence body and behavior.
For example, elevated levels of the hormone angiotensin (whose source is the kidney)
lead to a feeling of thirst, whereas adrenaline is involved in fight-or-flight reactions
(fear, anxiety, aggression). Hormone release by the endocrine system is controlled
either directly by the brain or by (the levels of) other hormones.

Emotions such as fear, and the resulting survival-related reactions, suchas fleeing
from a predator are, of course, very important for the survival of ani- mals and it is
therefore perhaps not surprising that robotics researchers have begun considering
artificial emotions in robots. Furthermore, the use of arti- ficial hormones in the
modulation of behavior and for behavior selection in autonomous robots has been
studied as well.

4.4 Ethology

Historically, different approaches to animal behavior were considered in Eu- rope and
the USA: European scientists, such as the winners of the 1972 Nobel prize for
medicine or physiology, Lorenz, Tinbergen, and von Frisch, generally were concerned
with the study of the behavior of animals in their natural en- vironment. Indeed, the
term ethology can be defined as the study of animals in their natural environment. By
contrast, American scientists working with animal behavior generally performed
experiments in controlled environments (e.g. a laboratory). This field of research is
termed comparative psychology.

Both approaches have advantages and disadvantages: The controlled ex-
periments carried out within comparative psychology allow more rigor than the
observational activities of ethologists, but the behaviors considered in such
experiments may, on the other hand, differ strongly from the behaviors exhib- ited by
animals in their natural environment.

However, in both approaches, phenomenological models are used, i.e. mod- els
which can describe (and make predictions) concerning, for example, a cer- tain
behavior, without modelling the detailed neural activities responsible for the behavior.
Indeed, many ethological models introduce purely artificial con- cepts (such as
action-specific energy in Lorenz’ model for animal motivation), which, nevertheless,
may offer insight into the workings of abehavior.

On the following pages, the major classes of animal behavior will be intro- duced
and described.

198

CHAPTER 4. ANIMAL BEHAVIOR 19

4.4.1 Reflexes

Reflexes, the simplest forms of behavior, are involuntary reactions to exter- nal
stimuli. An example is the withdrawal reflex, which is present even in very simple
animals (and, of course, in humans as well). However, even re- flexes show a certain
degree of modulation. For example, some reflexes exhibit warm-up, meaning that
they do not reach their maximum intensity instanta- neously (an example is the
scratch reflex in dogs). Also, reflexes may exhibit fatigue, by which is meant a
reduced, and ultimately disappearing, intensity even if the stimulus remains
unchanged. Two obvious reasons for fatigue may be muscular or sensory exhaustion,
i.e. either an inability to move or an inabil- ity to sense. However, these explanations
are often wrong, since the animal may be perfectly capable of carrying out other
actions, involving both muscles and sensors, even though it fails to show the particular
reflex response under study. An alternative explanation concerns neural exhaustion,
i.e. an inability of the nervous system to transmit signals (possibly as a result of
neurotrans- mitter depletion). An example' is the behavior of Sarcophagus (don’t ask
- you don’'t want to know) larvae. These animals generally move away from light.
However, if placed in a tunnel, illuminated at the entrance, and with a dead end (no
pun intended), they move to the end of the tunnel, turn around, and move towards the
light, out of the tunnel. This is interesting, since these larvae will (if not constrained)
always move away from light. However, this is neither a case of muscular exhaustion
nor sensory exhaustion. Instead, the larvae have simply exhausted their neural circuits
responsible for the turning behavior.

4.4.2 Kineses and taxes

Another form of elementary behavior is orientation of motion, either towards an object,
substance, or other stimulus, or away from it. In taxis, the animal follows a gradient
in a stimulus such as a chemical (chemotaxis) or a light source (phototaxis). Typical
examples are pheromone trail following in (some) ants, an example of chemotaxis,
and the motion towards a light source by fly maggots. It is easy to understand how
such phototaxis occurs: the maggots compare the light intensity on each side of their
bodies, and can thus estimate the light gradient. Motion towards a higher
concentration (of food, for exam- ple), is exhibited even by very simple organisms,
such as bacteria. One may be tempted to use the same explanation, i.e. comparison
of concentrations on different sides of the body, for this case as well. However,
bacteria are simply too small for the gradient (across their minuscule bodies) to be
measurable. In the case of the common E. Coli bacterium, concentration differences
as small as one part in 10,000 would have to be detectable in order for the organism
to

ISee Essentials of animal behavior, by P.).B. Slater.

199

CHAPTER 4. ANIMAL BEHAVIOR 20!

follow the gradient in the same way as the fly maggots do. Interestingly, E. Colibacteria
are nevertheless able to move towards, and accumulate in, regions of high food
concentration, an ability which is exploited by another predatory bacterium, M.
Xanthus, which secretes a substance that attracts E. Coli inwhat Shi and Zusman?
has called “fatal attraction”. The fact that the M. Xanthus are able to feed on E. Coli
is made all the more interesting by the fact that the latter move around 200 times faster
than the former. Now two questions arise: How do the E. Coli find regions of higher
food concentration, and how do the

M. Xanthus catch them?

Case study: Behavior selection in E. Coli

Interestingly, a very simple model can account for the ability of E. Colito move towards
regions of higher concentration. Essentially, the E. Coli bac- teria have two behaviors,
straight-line movement, and random-walk tumbling. It can be shown experimentally
that, at any given absolute concentration of an attractant substance, the bacteria
generally exhibit the tumbling behavior, at least after some time. However, if the
bacteria are momentarily placed in a region of higher concentration, they begin
moving in straight lines. Now, this cannot be due to normal gradient following, since
there is no (spatial) gradi- ent. However, there is a temporal gradient, i.e. a difference
in concentration over time, and this provides the explanation: While unable to detect
a spa- tial gradient, the E. Coli bacteria are equipped with a rudimentary short-term
memory, allowing them to detect a temporal gradient. The behavior of the

E. Coliis a simple example of chemotaxis. It is because of its slow motion that the M.
Xanthus bacterium is able to catch the E. Coli: By releasing an attractant and staying
in the same area, the M. Xanthus is able to lure the E. Colito the region, and to keep
them tumbling there, ending up as food for the M. Xanthus

- indeed a fatal attraction.

A simple mathematical model of bacterial chemotaxis can now be formu- lated.
Consider a bacterium faced with the choice of activating its straight-line movement
behavior (hereafter: B:) or its tumbling behavior (hereafter: B), and introduce a
variable U such that B: is activated if U > T (where T is the threshold), and B:
otherwise. Let X be the value of the stimulus (i.e. the con- centration of the
attractant). Consider now a leaky integrator, given by the equation

dv () +aV (r) = bX(2). (4.1)

dr

Now, consider the difference U (¢) = X(¢) V (1),-and set T = 0. In case the bacterium
experiences an increase X(t) in the concentration of the attracant, U(r) becomes
positive, thus activating B.. If X remains constant, U(¢) slowly

2See Shi, W. and Zusman, D.R. Fatal attraction, Nature 366, pp. 414-415 (1993).

200

CHAPTER 4. ANIMAL BEHAVIOR 20

time time

Figure 4.1: Anillustration of the switch between straight-line swimming and tumbling in E. Coli
bacteria, based on a model with a single leaky integrator given in Eq. (4.1). The left panel
shows the variation of the attractant concentration X(t), and the right panel shows U (t). The
straight-line swimming behavior (B) is active betweent = 1 and t = 3.

falls towards zero (and eventually becomes negative, if b > a). However, if there is a
decrease in X, i.e. if the bacterium begins to leave the region of high attractant
concentration, U (1) becomes negative, and B is activated, keeping the bacterium
approximately stationary. Thus, the chemotaxis of E. Coli can be modelled with a
single leaky integrator.

Finally, note the importance of taxes in simple behaviors for autonomous robots.
For example, it is easy (using, for example, two IR sensors) to equip a robot with the
ability to follow a light gradient. Thus, for example, if a light source is placed next to,
say, a battery charging station, the robot may achieve long-term autonomy, by
activating a phototactic behavior whenever the bat- tery level drops below a certain
threshold. Problems involving such behavior selection in autonomous robots will be
studied further in later chapters in con- nection with the topic of utility. The simple
chemotaxis of the E. Coli can be considered as a case of utility-based behavior
selection, in which one behavior, B,, has a fixed utility 7, and the utility of the other, B,
is given by U(?).

Kinesis is an even simpler concept, in which the level of activity (e.g. move-
ment) of an organism depends on the level of some stimulus, but is undirected. An
example is the behavior of wood lice: If the ambient humidity is high (a condition
favored by wood lice), they typically move very little. If the humid- ity drops, they will
increase their rate of movement.

4.4.3 Fixed action patterns

The concept of fixed action patterns (FAPs) was introduced to describe more
complex behaviors that are extended over time (beyond the temporal exten- sion of
the stimulus) and may involve a sequence of several actions. It should be noted,
however, that the term FAP is used less frequently today, since it has been observed
that several aspects of such behaviors are not at all fixed. Some

201

CHAPTER 4. ANIMAL BEHAVIOR 20:

Figure 4.2: The motion of simulated E. Coli bacteria based on the behavior switch defined in
the main text. 100 bacteria were simulated, and the parameters a and b were both equal to

1. The attractant had a gaussian distribution, with its peak at the center of the image. The
threshold was set to 0. The left panel shows the initial distribution of bacteria, and the right
panel shows the distribution after 10 seconds of simulation, using a time step of 0.01.

behaviors, such as courtship behaviors are, however, quite stereotyped, since they
are required to be strongly indicative of the species in question.

An example of an FAP is the egg-retrieving behavior of geese, which is carried out
to completion (i.e. the goose moves its beak all the way towards its chest) even if the
egg is removed.

Another example is the completely stereotyped attack behavior of the pray- ing
mantis (an insect). Once started, the behavior is always carried out to com- pletion
regardless of the feedback from the environment (in the case of the praying mantis,
the attack occurs with terrifying swiftness, making it essen- tially impossible for the
animal to modulate its actions as a result of sensory feedback).

In addition to FAPs, another concept which has also fallen out of fashion, is the
innate releasing mechanism (IRM). An IRM was considered a built-in mechanism,
characteristic of the species in question, inside the animal which caused it to perform
some action based on a few salient features of a stimulus. An example of such a sign
stimulus is the red belly of male stickleback fish in breeding condition. When
competing for a female, the male stickleback must identify and chase away other
males. It has been shown in experiments in- volving the presentation of various crude
models of fish to a male stickleback, that the detection of the red color of the belly of
other males causes the fish to assume an aggressive posture (rather than, say, the
detailed shape of the model, which seems to be more or less irrelevant). Note that
several aspects

202

CHAPTER 4. ANIMAL BEHAVIOR 20!

of IRMs, e.g. the question of whether they really are inborn mechanisms, have been
called into question.

4.4.4 Complex behaviors

As indicated above, many action sequences that were originally described as FAPs
have been found to have a much more complex dynamics than origi- nally thought.
Furthermore, many behaviors, such as prey tracking by various mammals, are highly
adaptive or involve many different aspects (see the case study below), and can hardly
be called FAPs.

Animals generally do not simply react to the immediate stimuli available from the
environment, but maintain also an internal state, which together with the external
(sensory) stimuli determine which action to take. Behaviors which depend on an
internal state are said to be motivated, and the study of animal motivation is an
important part of ethology. In early models of motivation, the concept of drive was
central. A simple model of motivation, based on drives, is the so called Lorenz’
psychohydraulic model, which will not be studied in the detail here, however. While
Lorenz’ model is simple, intuitive, and ped- agogical, alas it does not fit observations
of animal behavior very well. In the modern view of motivation, a given internal state
is maintained through a combination of several regulatory mechanisms, and rather
than postulating the concept of drives for behaviors, the tendency to express a given
behavior is considered as a combination of several factors, both internal and external.
The physiological state of the animal (e.g. its temperature, amount of water in the
body, amount of different nutrients etc.) can be represented as a point in a multi-
dimensional physiological space. In this space, lethal boundaries can be introduced,
i.e. levels which the particular variable (for example, body temperature) may no
exceed or fall below.

The motivational state of the animal is, in this view, generated by the com-
bination of the physiological state and the perceptual state (i.e. the signals obtained
through the sensory organs of the animal), and can be represented as a point in a

motivational space.

As an example of a complex animal behavior, we shall end this chapter with a
discussion of desert ant navigation.

Case study: Desert ant navigation

As mentioned above, many species of ants use pheromone trails during navi- gation.
However, for desert ants, such as Cataglyphis Fortis, pheromones would not be very
useful, due to the rapid evaporation in the desert heat. However, when searching for
food, Cataglyphis is nevertheless capable of navigating over very large distances
(many thousands of body lengths), and then to return to (and locate) the next on an
essentially straight line. Locating the nest is no

203

CHAPTER 4. ANIMAL BEHAVIOR 20«

Figure 4.3: A schematic illustration of a typical Cataglyphis trajectory. On the outbound
journey, away from the nest (shown as a filled disc) the ant moves on a rather irregular path.
However, when returning, the ant follows a more or less straight trajectory (shown as a thick
line), following the vector obtained by path integration.

small feat, keeping in mind that the entrance to the nest is a small hole in the ground.

How does Cataglyphis achieve such accurate navigation? This issue has been
studied meticulously by Wehner and his colleagues and students®. Their experiments
have shown that Cataglyphis has the capability of computing dis- tance travelled and
also to combine the position information thus obtained with heading information
obtained using an ingenious form of compass, based on the pattern of light polarization
over the sky. Combining the odometric in- formation with the compass information,
Cataglyphis is able to carry out path integration, i.e. to determine, at any time, the
direction vector (from the nest to its current position), regardless of any twists and
turns during the outbound section of its movement. Once a food item has been found,
the ant will use the stored direction vector in order to return to the nest on an almost
straight line.

3See e.g. Wehner, R. Desert ant navigation: how miniature brains solve complex tasks,] Comp
Physiol, 189, pp. 579-588, 2003.

204

CHAPTER 4. ANIMAL BEHAVIOR 20!

It should be noted that the light polarization patterns varies with the move- ment of
the sun in the sky. Thus, in order to use its compass over long peri- ods of time, the
ant also needs an ephemeris function, i.e. a function that de- scribes the position of
the sun during the day. Experiments have shown that Cataglyphis indeed has such a
function.

Even with the path integration, finding the exact spot of the nest is quite difficult:
As in the case of robotics, the odometric information and the compass angle have
limited accuracy. However, the tiny brain of Cataglyphis (weighing in at around 0.1
mg, in a body weighing around 10 mg), is equipped with yet another amazing skill,
namely pattern matching: Basically, when leaving its nest, Cataglyphis takes (and
stores) a visual snapshot (using its eyes) of the scenery around the nest. Then, as
the ant approaches the nest (as determined by the vector obtained from path
integration), the ant will match its current view to the stored snapshot, and thus find
the nest.

It is interesting to note the similarities between robot navigation (which will be
described in detail in a later chapter) and Cataglyphis navigation: In both cases, the
agent (robot or ant) combines path integration with an indepen- dent calibration method
based on landmark recognition in order to maintain accurate estimates of its pose.

In fact, the description of Cataglyphis navigation above is greatly simplified. For
example, the interplay between path integration and landmark detection is quite a
complex case of decision-making. Furthermore, recent research* has shown that, in
the vicinity of the nest, Cataglyphis uses not only visual but also olfactory landmarks
(that is, landmarks based on odour). This illustrates another important principle,
namely that of redundancy. If one sensorymodal- ity, or a procedure (such as pattern
matching) derived from it, fails, the agent (robot or ant) should be able to use a
different sensory modality to achieve its objective.

See Steck, K. et al. Smells like home: Desert ants, Cataglyphis fortis, use olfactory landmarks to
pinpoint the nest, Frontiers in Zoology 6, 2009.

205

5

-Approaches_ta_machine intelligence

The quest to generate intelligent machines has now (2011) been underway for about
a half century. While much progress has been made during this period of time, the
intelligence of most mobile robots in use today reaches, at best, the level of insects.
Indeed, during the last twenty years, many of the efforts in robotics research have
been inspired by rather simple biologicalorganisms, with the aim of understanding and
implementing basic, survival-related be- haviors in robots, before proceeding with
more advanced behaviors involv- ing, for example, high-level reasoning. These efforts
have been made mainly within the paradigm of behavior-based robotics (BBR), an
approach to ma- chine intelligence which differs quite significantly from traditional
artificial intelligence (Al). However, researchers have not (yet) succeeded in
generat- ing truly intelligent machines using either BBR, Al or a combinationthereof.

This chapter begins with a brief discussion of the paradigms introduced above.
Next, a more detailed introduction to BBR will be given. Finally, the topic of generating
basic robotic (motor) behaviors will be considered.

5.1 Classical artificial intelligence

The field of machine intelligence was founded in the mid 1950s, and is thus a
comparatively young scientific discipline. It was given the name artificial intelligence
(Al), as opposed to the natural intelligence displayed by certain biological systems,
particularly higher animals. The goal of Al was to generate machines capable of
displaying human-level intelligence. Such machines are required to have the ability
to reason, make plans for their future actions, and also, of course, to carry out these
actions.

However, as noted above, despite a half—century of activity in this area, no
machines displaying human-level intelligence are, as yet, available. True, there are
machines that display a limited amount of intelligent behavior, such

55

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 20°

Sensors

\ct Actuators

Figure 5.1: A comparison of the information flow in classical Al (left panel) and in BBR (right
panel). For BBR, any number of behaviors may be involved, and the figure only shows an
example involving four behaviors.

as vacuum-cleaning and lawn-mowing robots, and even elevators, automatic trains,
TV sets and other electronic equipment. However, the intelligence of these machines
is very far from the human-level intelligence originallyaimed at by Al researchers. To
put it mildly, the construction of artificial systems with human-level intelligence has
turned out to be difficult. Human—level intelli- gence is, of course, extremely complex,
and therefore hardly the best starting point. The complex nature of human brains is
difficult both to understand and to implement, and one may say that the preoccupation
with human—level intelligence in Al research has probably been the most important
obstacle to progress.

In classical Al, the flow of information is as shown in the left panel of Fig. 5.1.
First, the sensors of the robot sense the environment. Next, a (usually very complex)
world model is built, and the robot reasons about the effects of various actions within
the framework of this world model, before finally de- ciding upon an action, which is
executed in the real world. Depending on the complexity of the task at hand, the
modelling and planning phases can be quite time-consuming. Now, this procedure is
very different from the distributed form of computation found in the brains of biological
organisms, and, above all, it is generally very slow, strongly reducing its survival value.
This is not the way biological organisms function. As a good counterexample,
consider the evasive maneuvers displayed by noctuid moths, as they attempt to
escape from a pursuing predator (for instance, a bat). A possible way of achieving
evasive behavior would be to build a model of the world, considering many different
bat trajectories, and calculating the appropriate response. However,

207

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 20t

even if the brain of the moth were capable of such a feat (it is not), it would most likely
find itself eaten before deciding what to do. Instead, moths use a much simpler
procedure: Their evasive behavior is in fact based on only a few neurons and an
ingenious positioning of the ears on the body. This simple sys- tem enables the moth
to fly away from an approaching bat and, if it is unable to shake off the pursuer, start
to fly erratically (and finally dropping toward the ground) to confuse the predator.

As one may infer from the left panel of Fig. 5.1, classical Al is strongly fo- cused
on high-level reasoning, i.e. an advanced cognitive procedure displayed in humans
and, perhaps, some other mammals. Attempting to emulate such complex biological
systems has proven to be too complex as a starting-point for research in robotics:
Classical Al has had great success in many of the sub- fields it has spawned (e.g.
pattern recognition, path planning etc.), but has made little progress toward the goal
of generating truly intelligent machines, capable of autonomous operation.

5.2 Behavior-based robotics

The concept of BBR was introduced in the mid 1980s, and was championed by
Rodney Brooks' and others. Nowadays, the behavior-based approach is used by
researchers worldwide, and it is often strongly influenced by ethology (see Chapter 4).

BBR approaches intelligence in a way that is very different from the classi- cal Al
approach, as can be seen in Fig. 5.1. BBR, illustrated in the right panel of Fig. 5.1 is
an alternative to classical Al, in which intelligent behavior is built from a set of basic
behaviors. This set is known as the behavioral repertoire. Many behaviors may be
running simultaneously in a given robotic brain, giv- ing suggestions concerning which
actions the robot ought to take. An attempt should be made to define the concepts of
behaviors and actions, since they are used somewhat differently by different authors.
Here, a behavior will be de- fined simply as a sequence (possibly including feedback
loops) of actions per- formed in order to achieve some goal. Thus, for example, an
obstacle avoid- ance behavior may consist of the actions of stopping, turning, and
starting to move again in a different direction.

The construction of a robotic brain (in BBR) can be considered a two-stage
process: First the individual behaviors must be generated. Next, a system for
selecting which behavior(s) to use in any given situation must be constructed as well:
In any robot intended for complex applications, the behavior selec- tion system is
just as important as the individual behaviors themselves. Be-

1See e.g. Brooks, R. A Robust Layered Control System for a Mobile Robot, IEEE Journal of Robotics
and Automation, RA-2, No. 1, pp. 14-23, 1986.

208

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 20!

havior selection or, more generally, decision-making will be considered in a later
chapter.

The example of the moth above shows that intelligent behavior does not
(always) require reasoning, and in BBR one generally uses a more generous
definition of intelligent behavior than that implicity used in Al. Thus, in BBR, one may
define intelligent behavior as the ability to survive, and to strive to reach other goals,
in an unstructured environment. This definition is more in tune with the fact that most
biological organisms are capable of highly intelligent be- havior in the environment
where they normally live, even though they may fail quite badly in novel environments
(as illustrated by the failure of, for example, a fly caught in front of a window). An
unstructured environment changes rapidly and unexpectedly, so that it is impossible
to rely completely on static maps: Even though such maps are highly relevant during,
say, naviga- tion, they must also be complemented with appropriate behaviors for
obstacle avoidance and other tasks.

The BBR approach has been criticized for its inability to generate solutions to
anything other than simple toy problems. In BBR, one commonly ties action directly to
sensing; in other words, not much (cognitive) processing occurs. Furthermore, BBR
is a rather loosely defined paradigm, in which many dif- ferent representations of
behaviors and behavior selection systems have been developed. The absence of a
clearly defined, universal representation of be- haviors and behavior selection makes
it difficult, say, to combine (or compare) results obtained by different authors and to
transfer a robotic brain (or a part thereof) from one robotic platform to another.

For these (and other) reasons, the Adaptive systems research group at Chal- mers
has, over the last few years, developed the General-purpose robotic brain structure
(GPRBS), which is also implemented in GPRSim, with the specific aim of applying the
strong sides of BBR (e.g. the connection to biological sys- tems, allowing the
development of robust, survival-related behaviors) as well as the strong sides of
classical Al (for implementing high-level cognitive pro- cesses). Furthermore, GRPBS
implements a standardized method for decision- making. This structure will not be
described further here, however. Instead, the topic of generating simple behaviors will
be considered.

5.3 Generating behaviors

As indicated above, a robot intended for operation in the real world should first be
equipped with the most fundamental of all behaviors, namely those that deal with
survival. In animals, survival obviously takes precedence over any other activity:
Whatever an animal is doing, it will suspend that activity if its life is threatened. What
does survivalinvolve inthe case of arobot? In order to function, a robot must, of course,
be structurally intact, and have a non-zero

209

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 211

energy level in its batteries. Thus, examples of survival-related behaviors are Collision
avoidance and Homing (to find, say, a battery charging station). How- ever, even more
important, particularly for large robots, is to avoid harming people. Thus, the purpose
of collision avoidance is often to protect people in the surroundings of the robot, rather
than protecting the robot itself. Indeed, one could imagine a situation where a robot
would be required to sacrifice itself in defense of a human (this is what robots used
by bomb squads do already today). These ideas have been summarized beautifully
by the great science fiction author Isaac Asimov in his three laws of robotics, which
are stated as follows

First law: A robot may not injure a human being, or, through inaction, allow a
human being to come to harm.

Second law: A robot must obey orders given it by human beings, except
where such orders would conflict with the first law.

Third law: A robot must protect its own existence as long as such protec- tion
does not conflict this the first or second law

While Asimov’s laws certainly can serve as an inspiration for researchers work- ing on
autonomous robots, a full implementation of those laws would be a daunting task,
requiring reasoning and deliberation by the robot on a level way beyond the reach of
the current state-of-the-art. However, in a basic sense, BBR and GPRBS clearly deal
with behaviors related to Asimov’s laws.

5.3.1 Basic motor behaviors in ARSim

Writing reliable behaviors for autonomous robots is more difficult than it might seem at
a first glance, particularly for robots operating in realistic (i.e. noisy and unpredictable)
environments. In GPRBS, as has been mentioned before, robotic brains consist of
several brain processes which together define the overall behavior of the robot.
However, there is no well-defined method for deciding the exact composition of a brain
process: For example, in some appli- cations, navigation and obstacle avoidance may
be parts of the same (motor) behavior whereas, in other applications, navigation and
obstacle avoidance may be separate behaviors, as illustrated beautifully by the
phenomenologi- cal model for the chemotaxis of E. Coliin Chapter 4, an example that
also il- lustrates an important principle, namely that of keeping individual behaviors
simple, if possible.

A common approach to writing behaviors is to implement them in the form of a
sequence of TF-THEN-ELSE rules. Such a sequence can also be interpreted as a
finite-state machine (FSM), i.e. a structure consisting of a finite number of states and
(for each state) a set of transition conditions. In each state, the robot

210

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 21

can carry out some action (or a sequence of actions), for example setting its motor
signals (left and right, for a differentially steered robot) to particular values.

In ARSim, the program flow essentially follows the diagram shown in Fig. 3.1.
Thus, in each time step of the simulation, (1) the robot probes the state of the
enviroment using its sensors. With the updated sensor readings, the robot then (2)
selects an action and (3) generates motor signals (one for each motor), which are then
sent to the motors. Next, (4) the position and velocity are updated, as well as (5) the
arena (if needed). Finally, (6) the termination criteria (for example, collisions) are
considered.

Note that, as mentioned in Chapter 3, for such a simulation to be realistic (i.e.
implementable in a real robot), the time required, in a corresponding real robot, for
the execution of steps (1) - (8) must be shorter than the simulation time step. By
default, ARSim uses an updating frequency of 100 Hz (i.e. atime step of 0.01 s), which
is attainable by the simple IR sensors used in the default setup. Furthermore, in the
simple behaviors considered here, the deliberations in step (2) usually amount to
checking a few if-then-else-clauses, a proce- dure that a modern processor
completes within a few microseconds.

The writing of basic behaviors for autonomous robots will be exemplified
(1) in the form of a wandering behavior, which allows a robot to explore its
surroundings, provided that no obstacles are present, and (2) using a simple
navigation behavior which makes the robot move a given distance (in a straight line),
using odometry. Other, more complex behaviors, will be considered in the home

problems.

5.3.2 Wandering

The task of robot navigation, in a general sense, is a very complex one, since it
normally requires that the robot should know its position at all times which, in turn,
requires accurate positioning (or localization), a procedure which will be considered
briefly in the next example. Simpler aspects of the motion of a robot can be considered
without the need to introduce localization. For exam- ple wandering is an important
behavior in, for instance, an exploration robot or a guard robot that is required to cover
an area as efficiently as possible. In order to implement a specific behavior in ARSim,
one must modify the CreateBrain and BrainStep functions. For the wandering
behavior, they take the shape shown in code listings 5.1 and 5.2.

As can be seen in code listing 5.1, the CreateBrain function defines all the relevant
variables and parameters of the robotic brain. The parameter values remain constant
during the simulation, whereas the variables, of course, do not. Even though the
variables are given values in CreateBrain, those val- ues are typically modified in
the first state (initialization) of the behavior; see

211

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

Code listing 5.1: The CreateBrain function for the wandering example.

1function b = CreateBrain;

e el

394% Variables
slleftMotorSignal = 0;
sriightMotorSignal = 0;

squrrentState = 0;

8 3% Parameters:

sflorwardMotorSignal = 0.5;

otfurnMotorSignal 0.7;

utjurnProbability 0.01;
12 |stopTurnProbability = 0.03;

13 |leftTurnProbability = 0.50;

14

15

b = struct (' LeftMotorSignal’,leftMotorSignal, ...

17 "RightMotorSignal’, rightMotorSignal, ...

18 "CurrentState’,currentState, ...

19 "ForwardMotorSignal’, forwardMotorSignal, ...
20 "TurnMotorSignal’, turnMotorSignal, ...

21 "TurnProbability’, turnProbability, ...

2 "StopTurnProbability’,stopTurnProbability, ...
23 "LeftTurnProbability’,leftTurnProbability) ;

code listing 5.2. Note the capitalization used when defining a Matlab struct.

212

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 21

Code listing 5.2: The BrainStep function for the wandering example.

1function b = BrainStep (robot, time);

3D = robot.Brain;

eif (b.CurrentState == 0) & Forward motion

7 | b.LeftMotorSignal = b.ForwardMotorSignal;
8 | b.RightMotorSignal = b.ForwardMotorSignal;
9 b.CurrentState = 1;

welseif (b.CurrentState == 1) % Time to turn?
1 r = rand;

12 if (r < b.TurnProbability)

13 s = rand;

14 if (s < b.LeftTurnProbability)

15 b.LeftMotorSignal = b.TurnMotorSignal;
16 b.RightMotorSignal = -b.TurnMotorSignal;
17 else
18 b.LeftMotorSignal = -b.TurnMotorSignal;
19 b.RightMotorSignal = Db.TurnMotorSignal;
20 end

21 b.CurrentState = 2;

2 end

selseif (b.CurrentState == 2) % Time to stop turning?
2 r = rand;

25 if (r < b.StopTurnProbability)

26 b.CurrentState = 0;

27 end

send

In this case, the BrainStep function is implemented as an FSM with three states.

In the first state (State 0), the motor signals are set to equal values, making the robot

move forward in an (almost) straight line, depending on the level of actuator noise.

The FSM then jumps to State 1. In this state, the FSM checks whether it should begin

turning. If yes, it decides (randomly) on aturning direction, and then jumps to State 2.
213

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 21«

If no, the FSM will remain in State

1. Note that the BrainStep function is executed 100 times per second (with the
default time step of 0.01 s). In State 2, the FSM checks whether it should stop turning.
If yes, it returns to State 0.

214

6 I

7Q

9
10

1 9
12d
1311

14 3

15

16

17b

18

19

20

21

22

23

24

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

Code listing 5.3: The CreateBrain function for the navigation example.

unction b = CreateBrain;

% Variables:

eftMotorSignal = 0;

ightMotorSignal = 0;

urrentState = 0;
initialPositionX = 0; $% Arbitrary value here - set in state 0.
initialPositionY = 0; $ Arbitrary value here - set in state 0.

Q

% Parameters:
esiredMovementDistance = 1;
otorSignalConstant = 0.90;

tDestinationThreshold = 0.02;

= struct (’LeftMotorSignal’,leftMotorSignal, ...

"RightMotorSignal’, rightMotorSignal, ...
"CurrentState’,currentState, ...
"InitialPositionX’,initialPositionX, ...

"InitialPositionY’,initialPositionyY, ...

"DesiredMovementDistance’,desiredMovementDistance, ...

"MotorSignalConstant’,motorSignalConstant, ...

"AtDestinationThreshold’,atDestinationThreshold) ;

5.4 Navigation

Purposeful navigation normally requires estimates of position and heading. In ARSIm,
the robot can be equipped with wheel encoders, from which odomet- ric estimates of
position and heading can be obtained. Note that the odometer is calibrated upon
initialization, i.e. the estimate is set equal to the true pose. However, when the robot
is moving, the odometric estimate will soon devi- ate from the true pose. In ARSim,
the odometric estimate (referred to as the odometric ghost) can be seen by setting

215

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 211
the variable ShowOdometricGhost to true.

A simple example of navigation, in which a robot is required to move 1 m in its
initial direction of heading, is given in code listings 5.3 and 5.4. As in the previous
example, the variables and parameters are introduced inthe CreateBrain function.
The BrainStepfunction is again represented as an FSM. In State 0, the initial
position and heading are stored and the FSM then jumps to State 1, in which the
motor signal s (range [—1, 1]) is setas

D—d
s=a (51)

D

216

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 21

where a is a constant, D is the desired movement distnace (in this case, 1 m) and d
is the actual distance moved.

217

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE 21t

Code listing 5.4: The BrainStep function for the navigation example.

1function b = BrainStep (robot, time);

3 = robot.Brain;

4

silf (b.CurrentState “= 0)

6 deltaX = robot.Odometer.EstimatedPosition(l) - b.InitialPositionX;
7 delta¥Y = robot.Odometer.EstimatedPosition(2) - b.InitialPositionY;

8 distanceTravelled = sqrt(deltaXxdeltaX + delta¥Y*deltay);

send

10

11 | $8%%33%88%%%3%% FSM: $%%3%%%%%%3%5%%%%3%%%
12 |[1if (b.CurrentState == 0) $ Initialization

13 b.InitialPositionX = robot.Odometer.EstimatedPosition (1) ;
14 b.InitialPositionY = robot.Odometer.EstimatedPosition(2);

15 b.CurrentState = 1;

6elseif (b.CurrentState == 1) % Adaptive motion
17 | motorSignal = b.MotorSignalConstant* (b.DesiredMovementDistance-...

18 distanceTravelled) /b.DesiredMovementDistance;

19 I b.LeftMotorSignal = motorSignal;

20 b.RightMotorSignal = motorSignal;

22 if (abs(b.DesiredMovementDistance - distanceTravelled) <

2 b.AtDestinationThreshold*b.DesiredMovementDistance)

23 b.CurrentState = 2;

2 % ’At destination’ % Output for debugging
25 end
welseif (b.CurrentState == 2) % At destination

27 b.LeftMotorSignal = 0;
22 b.RightMotorSignal = 0;

wend

The motor signal s is then applied to both wheels of the differentially steered robot.
As can be seen, the motor signals will gradually drop from a to (almost) zero. However,
when D d drops below bD, where b 1is a constant, the FSM jumps to State 2, in
which the robotstops. | — |

218

CHAPTER 5. APPROACHES TO MACHINE INTELLIGENCE

21!

219

6. Discussion

~Exploration, navftgatron,and-focalization

In the previous chapter, the concept of robotic behaviors was introduced and
exemplified by means of some basic motor behaviors. Albeit very simple, such
behaviors can be tailored to solve a variety of tasks such as, for example, wan- dering,
wall following and various forms of obstacle avoidance. However, there are also clear
limitations. In this chapter, some more advanced motor behaviors will be studied. First,
behaviors for exploration and navigation will be considered. Both of these two types
of behavior require accurate pose esti- mates for the robot. It is assumed that the robot
is equipped with a (cognitive) Odometry brain process, providing continuous pose
(and velocity) estimates. As mentioned earlier, such estimates are subject to
odometric drift, and there- fore an independent method for localization (i.e. odometric
recalibration) is always required in realistic applications. Such a method will be
studied in the final section of this chapter. However, exploration and navigation are im-
portant problems in their own right and, in order to first concentrate on those problems,
it will thus (unrealistically) be assumed, in the first two sections of the chapter, that
the robot obtains perfect, noise-free pose estimates using odometry only.

6.4 Exploration

Purposeful navigation requires some form of map of the robot’s environment. In many
cases, however, no map is available a priori. Instead, it is the robot’s task to acquire
the map, in a process known as simultaneous localization and mapping (SLAM).
In (autonomous) SLAM, a robot is released in an unknown arena, and it is then
supposed to move in such a way that, during its motion, its long-range sensors
(typically an LRF) covers every part of the arena, so that

67

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 22

the sensor readings can be used for generating a map. This is a rather diffi- cult task
since, during exploration and mapping, the robot must keep track of its position using,
for odometric recalibration, the (incomplete, but grow- ing) map that it is currently
generating. SLAM is an active research topic, for which many different methods have
been suggested. A currently popular ap- proach is probabilistic robotics, in which
the robot maintains a probability density function from which its position is inferred.
However, SLAM is be- yond the scope of this text. Instead, the simpler, but still
challenging, topic of exploration given perfect positioning (as mentioned in the
introduction to this chapter) will be considered.

Exploration can be carried out for different reasons. In some applications, such as

lawn mowing, vacuum cleaning, clearing mine fields etc., the robot must physically
cover as much as possible of the floor or ground in its envi- ronment. Thus, the robot
must carry out area coverage. In some applications,
e.g. vacuum cleaning, it is often sufficient that the robot carries out a more or less
aimless wandering that, eventually, will make it cover the entire floor. In other
applications, such as mapping, it is unnecessary for the robot to physi- cally visit every
spot in the arena. Instead, what matters is that its long-range sensor, typically an LRF
(or a camera), is able to sense every place in the arena at some point during the
robot’s motion. The problem of exploring an arena such that the long-range sensor(s)
reach all points in the arena will here be referred to as sensory area coverage.

Exploring an arena, without any prior knowledge regarding its structure, is far from
trivial. However, a motor behavior (in the GPRBS framework) for sensory area
coverage has recently (2009) been implemented'. This Exploration behavior has been
used both in the simulator GPRSim and in a real robot (as a part of SLAM). In both
cases, the robot is assumed to be equipped with an LRF. The algorithm operates as
follows: A node is placed at the current (esti- mated) position of the robot. Next, the
robot generates a set of nodes at a given distance (D) from its current position
(estimated using the Odometry process). Before any nodes are placed, the robot used
the LRF (with an opening (sweep) angle «) to find feasible angular intervals for node
placement, i.e. angular in- tervals in which the distance to the nearest obstacle
exceeds D + A, where A is a parameter measuring the margin between a node and
the nearest obsta- cle behind the node. The exact details of the node placement
procedure will not be given here. Suffice it to say that, in order to be feasible, an
angular in- terval must have a width y exceeding a lower limit y... in order for a node
to be placed (at the center of the angular interval). Furthermore, if the width of a
feasible angular interval is sufficiently large, more than one node may be placed in
the interval. An illustration of feasible angular intervals and node

1See Wahde, M. and Sandberg, D. An algorithm for sensory area coverage by mobile robots oper-
ating in complex arenas, Proc. of AMIRE 2009, pp. 179-186, 2009.

221

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 22

Figure 6.1: An illustration of the node placement method in the Exploration behavior. The
left panel shows the distances obtained over the 180 degree opening angle of the LRF (note
that individual rays are not shown). The inner semi-circle has a radius of D (the node
placement distance) whereas the radius of the outer semi-circle is D + A. The right panel
shows the re- sulting distribution of nodes. Note that one of the two feasible angular intervals
is sufficiently wide to allow two nodes to be placed.

placement is given in Fig. 6.1.
At this point, the reader may ask why nodes are placed at a distance D

from the current node, rather than as far away as possible (minus the margin

A). The reason is that, in practical use, one cannot (as is done here) assume that the
odometry provides perfect pose estimates. Since the Exploration behavior is normally
used in connection with SLAM, for which accurate positioning is crucial when building
the map (a process involving alignment of consecutive laser scans), one cannot move
a very large distance between consecutive laser snapshots. Thus, even though the
typical range R of an LRF is around 4-10 m or more, the distance D is typically only
around 1 m.

An additional constraint on node placement regards the separation (con- cerning
distances, not angles) between nodes. A minimum distance of d (typ- ically set to 0.75
m or so) is enforced. The requirement that nodes should be separated by a distance
of at least d makes the algorithm finite: At some point, it will no longer be possible to
place new nodes without violating this con- straint. Thus, when all nodes have been
processed (i.e. either having beenvis- ited or deemed unreachable, see below), and
no further nodes can be added, the exploration of the arena is complete.

Returning to the algorithm, note that the initial node, from which the robot starts its
exploration, is given the status completed (implying that this node has been reached)
and is referred to as the active node. All newly generated nodes are given the status
pending. The robot also generates paths to the pending

222

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 22!

Figure 6.2: The early stages of a run using the exploration algorithm, showing a robot ex-
ploring a single rectangular room without a door. The arena contains a single, low obstacle,
which cannot be detected using the LRF (since it is mounted above the highest point of the
obstacle). In each panel, the target node is shown with two thick circles, pending nodes are
shown as a single thick circle, completed nodes as a filled disc, and unreachable nodes as a filled
square. Upper left panel: The robot, whose size is indicated by a thin open circle, starts at
node 1, generating three new pending nodes (2, 3, and 4). Upper right panel: Having reached
node 4, the robot sets the status of that node to completed, and then generates new pending
nodes. Lower left panel: Here, the robot has concluded (based on IR proximity readings) that
node 6 is unreachable, and it therefore selects the nearest pending node (5, in this case) based
on path distance, as the new target node. Lower right panel: Having reached node 5, due to
the minimum distance requirement (between nodes) the robot can only generate one new
node (7). It rotates to face that node, and then moves towards it etc.

nodes. For example, if the robot is located at node 1 and generates three pend- ing
nodes (2,3 and 4), the paths will be (1, 2), (1, 3) and (1, 4). The robot next selects the
nearest node, based on the path length as the target node. In many cases (e.g. when
more than one node can be placed), several nodes are at the same (estimated)
distance from the robot. In such cases, the robot (arbitrarily)

223

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 22

selects one of those nodes as the target node. For the paths just described, the path
length equals the cartesian distance between the nodes. If a path con- tains more
than two elements, however, the path length will differ from the cartesian distance,
unless all the nodes in the path lie along a straight line. The path length is more
relevant since, when executing the exploration algorithm described here, the robot
will generally follow the path, even though direct movement between the active node
and a target node is also possible under certain circumstances; see below.

Next, the robot rotates to face the target node, and then proceeds towards it; see
the upper left panel of Fig. 6.2. During the motion, one of two things can happen:
Either (i) the robot reaches the target node or, (ii) using the output from a Proximity
detection brain process (assumed available), it concludes that the target node cannot
be reached along the current path. Note that, in order for the Proximity detection brain
process to be useful, the sensors it uses should be mounted at a different (smaller)
height compared to the LRF.

In case (i), illustrated in the upper right panel of Fig. 6.2, once the target node has
been reached, it is given the status completed and is then set as the new active node.
At this point, the paths to the remaining pending nodes are updated. Continuing with
the example above, if the robot moves to node 4, the paths to the other pending nodes
(2 and 3) will be updated to (4, 1, 2) and (4, 1, 3). Furthermore, having reached node
4, the robot generates new pend- ing nodes. Note that the robot need not be located
exactly onnode 4; instead, a node is considered to be reached when the robot passes
within a distance « from it. The new nodes are added as described above. The
minimum distance requirement between added nodes (see above) is also enforced.
Proceeding with the example, the robot might, at this stage, add nodes 5 and 6, with
the paths (4, 5) and (4 ,6). Again, the robot selects the nearest node based on the
path length, rotates to face that node, and then starts moving towards it etc. Note that
the robot can (and will) visit completed nodes more than once. How- ever, by the
construction described above, only pending nodes can be target nodes.

In case (ii), i.e. when the target node cannot be reached, the node is assigned the
status unreachable, and the robot instead selects another target node and proceeds
towards it, along the appropriate path. This situation is illustrated in the lower left panel
of Fig. 6.2: Here, using its Proximity detection brain process, the robot concludes that
it cannot reach node 6. It therefore marks this node unreachable, sets it as the active
node, and then sets the nearest pending node as the new target, in this case node 5.
One may wonder why case (ii) can oc- cur, since the robot uses the LRF before
assigning new nodes. The reason, of course, is that the LRF (which is assumed to be
two-dimensional) only scans the arena at a given height, thus effectively only
considering a horizontal slice of the arena. A low obstacle may therefore be missed,
until the robot comes sulfficiently close to it, so that the Proximity detection brain
process can detect it.

224

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 22!

S A

.
/.

4 Y
§ ,

7
4

A \0/\ 0\

Figure 6.3: Anillustration of a problem that might occur during exploration. Moving in one
particular direction (left panel) the robot is able to place and follow the nodes shown. However,
upon returning (right panel), the robot may conclude that it will be unable to pass the node
near the corner, due to the proximity detection triggered as the robot approaches the node,
with the wall right in front of it.

Note that unreachable nodes are exempt from the minimum distance require- ment.
This is so, since a given node may be unreachable from one direction but perhaps
reachable from some other direction. Thus, the exploration algorithm is allowed to
place new pending nodes arbitrarily close to unreachable nodes.

One should note that robust exploration of any arena is more difficult than it might
seem. An example of a problem that might occur is shown in Fig. 6.3. Here, the robot
passes quite near a corner on its outbound journey (left panel), but no proximity
detection is triggered. By contrast, upon returning (right panel) a proximity detection
is triggered which, in turn, may force the robot to abandon its current path. In fact, the
Exploration behavior contains a method (which will not be described here) for avoiding
such deadlocks. In the (very rare) cases in which even the deadlock avoidance
method fails, the robot sim- ply stops, and reports its failure.

Because of the path following strategy described above, the robot may sometimes
take an unnecessarily long path from the active node to the tar- get node. However,
this does not happen so often since, in most cases, the robot will proceed directly to
a newly added node, for which the path length is the same as the cartesian distance.
However, when the robot cannot place any more nodes (something that occurs, for
example, when it reaches a cor- ner), a distant node may become the target node.
Therefore, in cases where the path to the target node differs from the direct path, the
robot rotates to face the target node (provided that it is located within a distance L,
where L should be smaller than or equal to the range R of the LRF). Next, if the robot
concludes (based on its LRF readings) that it can reach the target node, it then
proceeds directly towards it, rather than following the path. However, also in this case,

225

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 221

Figure 6.4: Left panel: The robot in its initial position in an unexplored arena. Right panel:
The final result obtained after executing the Exploration behavior. The completed (visited)
nodes are shown as green dots, whereas the (single) unreachable node is shown as a red dot.
The final target node (the last node visited) is shown as a blue dot. In this case, the robot
achieved better than 99.5% sensory area coverage of the arena.

it is possible that a (low) obstacle prevents the robot from reaching its target, in which
case the robot instead switches to following the path as described above.

The robot continues this cycle of node placement and movement between nodes,
until all nodes have been processed (i.e. either having been visited or deemed
unreachable), at which point the exploration of the arena is complete. The Exploration
behavior consists of an FSM with 17 states, which will not be

226

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 22

@ ¢ 0 ¢
Figure 6.5: Three examples of grids that can be used in connection with grid-based naviga-
tion methods. In the left panel, the nodes are not equidistant, unlike the middle panel which
shows a regular lattice with equidistant nodes. The regular lattice can also be represented as

grid cells, as shown in the right panel. Note that the right and middle panels show equivalent
grids.

described in detail here. A performance example is shown in Fig. 6.4. The left panel
shows the robot at its starting point in a typical office arena. The right panel shows
the final result, i.e. the path generated by the robot. The completed (visited)
exploration nodes are shown as green dots, whereas the unreachable nodes (only
one in this case) are shown as red dots. The final target node is shown as a blue dot.
Note that the robot achieved a sensoryarea coverage (at the height of its LRF) of
more than 99.5% during exploration.

6.5 Navigation

In this section, it will again be assumed that the robot has access to accurate
estimates of its pose (from the Odometry brain process), and the question that will be
considered is: Given that the robot knows its pose and velocity, how can it navigate
between two arbitrary points in an arena? In the robotics liter- ature, many methods
for navigation have been presented, three of which will be studied in detail in this
section.

6.5.1 Grid-based navigation methods

In grid-based navigation methods, the robot’s environment must be covered with
an (artificial) grid, consisting of nodes (vertices) and edges connecting the nodes.
The grid may have any shape, as illustrated in the left panel of Fig. 6.5, i.e. it need
not be a rectangular lattice of the kind shown in the middle panel. However, if the grid
happens to be a rectangular lattice, it is often rep- resented as shown in the right
panel of the figure, where the nodes have been replaced by cells, and the edges are
not shown?. Furthermore, the edges must be associated with a (non-negative) cost,
which, in many cases is simply taken

Note that in the cell representation in the right panel, the sides of each cell are not edges: The
edges connect the centers of the grid cells to each other, as shown in the middle panel.

227

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 221

Figure 6.6: Left panel: An example of automatic grid generation. The walls of the arena are
shown as green thin lines. The black regions represent the forbidden parts of the arena, either
unreachable locations or positions near walls and other obstacles. The grid cell boundaries
are shown as thick yellow lines. Right panel: An example of a path between two points in the
arena. The basic path (connecting grid cells) was generated using Dijkstra’s algorithm (see
below). The final path, shown in the figure, was adjusted to include changes of directions
within grid cells, thus minimizing the length of the path. Note that all cells are convex, so that
the path segments within a cell can safely be generated as straight lines between consecutive
waypoints.

as the euclidean distance between the nodes. Thus, for example, in the grids shown
in the middle and right panels of Fig. 6.5, the cost of moving between adjacent nodes
would be equal to 1 (length unit), whereas, in the grid shown in the left panel the cost
would vary depending on which nodes are involved.

An interesting issue is the generation of a navigation grid, given a two-
dimensional map of an arena. This problem is far from trivial, especially in complex
arenas with many walls and other objects. Furthermore, the grid gen- eration should
take the robot’s size (with an additional margin) into account, in order to avoid
situations where the robot must pass very close to a wall or some other object. The
grid-based navigation methods described below gener- ate paths between grid cells.
On aregular grid with small, quadratic cells (as in the examples below) it is sometimes
sufficient to let the robot move on straight lines between the cell centers. However, the
generated path may then become somewhat ragged. Furthermore, in more complex
grids, where the cells are of different size, following a straight line between cell centers
may result in an unnecessarily long path. Thus, in such cases, the robot must normally
modify its heading within a cell, in order to find the shortest path.

When generating a grid, one normally requires the grid cells to be convex,

228

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 22!

1. Place the robot at the start node, which then becomes the current node.
Assign the status unvisited to all nodes.

2. Go through each of the cells a; that are (i) unvisited and (ii) directly reach- able
(via an edge) from the current node c. Such nodes are referred to as neighbors
of the current node. Compute the cost of going from a; to the target node 1,
using the heuristic f{a;).

3. Select the node awn associated with the lowest cost, based on the cost values
computed in Step 2.

4. Setthe status of the current node c as visited, and move to an» which then
becomes the current node.

5. Return to Step 2.

Figure 6.7: The best-first search algorithm.

so that all points on a straight line between any two points in the cell also are part of
the cell. One way of doing so is to generate a grid consisting of trian- gular cells, which
will all be convex. However, such grids may not be optimal: The pointiness of the grid
cells may force the robot to make many unnecessary (and sharp) turns. An algorithm
for constructing, from a map, a general grid consisting of convex cells with four or
more sides (i.e. non-triangular) exists as well®. Fig. 6.6 shows an example of a grid
generated with this algorithm. Because of its complexity, the algorithm will not be
considered in detail here. Instead, in the examples below, we shall consider grids
consisting of small quadratic cells, and we will neglect changes of direction within grid
cells.

Best-first search algorithm

In best-first search (BFS) algorithm the robot moves greedily towards thetar- get, as
described in Fig. 6.7. As can be seen, the BFS method chooses the next node based
on the (estimated) cost of going from that node n to the goal, which is estimated using
a heuristic function 1 (n). 1 (n) can be chosen in different ways, the simplest being to
use the euclidean distance between the node un- der consideration and the target.
However, in that case, the BFS method may, in fact, get stuck. A more sophisticated
heuristic function may, for example, add a penalty for each obstacle encountered on
a straight-line path from the node under consideration to the target node.

The path can be generated by simply storing the list of visited nodes during

3See Wahde, M., Sandberg, D., and Wolff, K. Reliable long-term navigation in indoor environ-
ments, In: Topalov, A.V. (Ed.), Recent advances in Mobile Robots, InTech, 2011, pp. 261-286.

229

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23!

Figure 6.8: Two examples of paths generated using the BFS algorithm. The cells (nodes) that
were checked during path generation are shown in light green, whereas the actual path is
shown in dark green and with a solid line. The yellow cell is the start node and the white cell
is the target node.

path generation. The BFS method is very efficient in the absence of obstacles or when
the obstacles are few, small, and far apart. An example of such a path generated with
BFS is shown in the left panel of Fig. 6.8. As can be seen, the robot quickly moves
from the start node to the target node. However, if there are extended obstacles
between the robot’s current position and the target node, the BFS algorithm will not
find the shortest path, as shown in the right panel of Fig. 6.8. Because of its greedy
approach to the target, the robot will find itself in front of the obstacle, and must then
make a rather long detour to arrive at the target node.

Dijkstra’s algorithm

Like BFS, Dijkstra’s algorithm also relies on a grid in which the edges are as-
sociated with non-negative costs. Here, the cost will simply be taken as the euclidean
distance between nodes. Instead of focusing on the (estimated) cost of going from a
given node to the target note, Dijkstra’s algorithm considers the distance between the
start node and the node under consideration, as de- scribed in Fig. 6.9. In Step 2, the
distance from the start node s to any node a; is computed using the (known) distance
from the initial node to the current node ¢ and simply adding the distance between ¢ and
a;. This algorithm will check alarge number of nodes, in an expanding pattern from the
start node, as shown in Fig. 6.10. In order to determine the actual path to follow,
whenever a new node «a is checked, a note is made regarding the predecessor node
p, i.e. the

230

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23

7. Place the robot at the start node s, which then becomes the current node.
Assign the distance value 0 to the start node, and infinity to all other nodes (in
practice, use a very large, finite value). Set the status of all nodes to unvisited.

8. Go through all the unvisited, accessible (i.e. empty) neighbors a; of the current
node ¢, and compute their distance d from the start node s. If dis smaller than
the previously stored distance d; (initially infinite, see Step 1), then (i) update
the stored distance, i.e. set d; = d and (ii) assign the current node as the
predecessor node of a;.

9. After checking all the neighbors of the current node, set its status to vis- ited.

10.Select the node (among all the unvisited, accessible nodes in the grid) with the
smallest distance from the start node, and set it as the new cur- rent node.

11.Return to Step 2, unless the target has been reached.

12.When the target has been reached, use the predecessor nodes to trace a path
from the target node to the start node. Finally, reverse the order of the nodes
to find the path from the start node to the targetnode.

Figure 6.9: Dijkstra’s algorithm.

node that was the current node when checking node a. When the target has been
found, the path connecting it to the initial node can be obtained by going through the
predecessor nodes backwards, from the target node to the initial node.

Unlike the BFS algorithm, Dijkstra’s algorithm is guaranteed to find the shortest
path* from the start node to the target node. However, a drawback with Dijkstra’s
algorithm is that it typically searches many nodes that, in the end, turn out to be quite
irrelevant. Looking at the search patterns in Figs. 6.8 and 6.10, one may hypothesize
that a combination of the two algorithms would be useful. Indeed, there is an algorithm,
known as A* that combines the BFS and Dijkstra algorithms. Like Dijkstra’s algorithm,
A* is guaranteed to find the shortest path. Moreover, it does so more efficiently than
Dijkstra’s algorithm. However, A* is beyond the scope of this text.

“There may be more than one such path: Dijkstra’s algorithm will select one of them.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23:

Figure 6.10: Two examples of paths generated using Dijkstra’s algorithm. The cells (nodes)
that were checked during path generation are shown in light green, whereas the actual path
is shown in dark green and with a solid line. The yellow cell is the start node and the white cell
is the target node.

6.5.2 Potential field navigation

Unlike the algorithms described above, the potential field method does not require
a grid. In the potential field method, a robot obtains its desired direc- tion of motion as
the negative gradient of an artificial potential field, generated by potentials assigned to
the navigation target and to objects in thearena.

Potential fields

As shown in Fig. 6.11, a potential field can be interpreted as a landscape with hills
and valleys, and the motion of a robot can be compared to that of a ball rolling through
this landscape. The navigation target is assigned a potential corresponding to a gentle
downhill slope, whereas obstacles should generate potentials corresponding to steep
hills.

In principle, a variety of different equations could be used for defining dif- ferent
kinds of potentials. An example, namely a potential with ellipsoidal equipotential
surfaces, and exponential variation with (ellipsoidal) distance from the center of the
potential, takes the mathematical form

(=) ()’

o(X, y; Xp, ypo 0, B,) = o€ 5 v, (6.1)

where (x, y) is the current (estimated) position at which the potential is calcu- lated,
(x,, y,) is the position of the object generating the potential, and o, and y are constants
(not to be confused with the constants defined in connection

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23!

\

Obstacle

Figure 6.11: A potential field containing a single obstacle and a navigation goal.

with the equations of motion in Chapter 2 and the sensor equations in Chapter 3). Now,
looking at the mathematical form of the potentials, one can see that an attractive
potential (a valley) is formed if a is negative, whereas a positive value of a will generate
a repulsive potential (a hill).

Normally, the complete potential field contains many potentials of the form given in
Eq. (6.1), so that the total potential becomes

>
D, y) = 0ilx, y; xp, Ypp @i, Bir), (6.2)
i=1

where k is the number of potentials. An example of a potential field, for a simple arena
with four central pillars, is shown in Fig. 6.12.

Navigating in a potential field

Once the potential field has been defined, the desired direction of motion t of the robot
can be computed as the negativegapthe normalized %radient of the field
r= - o® o (6.3)

Ox 0Oy

>

L)

VD]~ T %2 22
© 2012, 2016, Mattias Wahde, mattias.w@hde@chalméﬂ.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23

Figure 6.12: An illustration of potential field navigation in GPRSim. Upper left panel: Asimple
arena, with a robot following a potential field toward a target position in the upper left corner
of the arena. Upper right panel: The corresponding potential field, generated by a total of

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23!

nine potentials (one for the target, one for each of the walls, and one for each pillar). Lower
left panel: A contour plot of the potential field, in which the target position can be seen in the
upper left corner. Lower right panel: The trajectory followed by the robot. Note that, in this
simulation, the odometric readings were (unrealistically) noise-free.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23!

In order to integrate the equations of motion of the robot, it is not sufficient only to
know the desired direction: The magnitude of the force acting on the robot must also
be known. In principle, the negative gradient of the potential field could be taken
(without normalization) as the force acting on the robot, providing both magnitude and
direction. However, in that case, the magni- tude of the force would vary quite strongly
with the position of the robot, making the robot a dangerous moving object (if it is
large). Thus, the poten- tial field is only used for providing the direction, as in Eq. (6.3).
The robot’s speed v (i.e. the magnitude of its velocity vector v) can be assigned in
various ways. For example, one may use proportional control to try to keep the speed
constant®.

An example of a trajectory generated during potential field navigation is shown in
the lower right panel of Fig. 6.12. In the experiment in which this figure was generated,
the noise in the odometric readings was (unrealistically) set to zero, since the aim here
is simply to illustrate potential field navigation. However, in a realistic application, one
would have to take into account the fact that the robot’s estimate of its pose will never
be error-free. Thus, when setting up a potential field, it is prudent to make the
potentials slightly larger® than the physical objects that they represent. At the same
time, in narrow corridors, one must be careful not to make the potentials (for walls on
opposite sides of the corridor, say) so wide that the robot will be unable topass.

In fact, the definition of a potential field for a given arena is something of an art. In
addition to the problem of determining the effective extension of the potentials, one
also has to decide whether a given object should be repre- sented by one or several
potentials (for instance of the form givenin Eq. (6.1)). For example, an extended object
(for example, a long wall) can be represented as a single potential (typically with very
different values of the parameters and y), but it can also be represented as a
sequence of potentials. In complex environments, one may resort to stochastic
optimization of the potentialfield, as well as the details of the robot’s motion in the

field”.

Aspects of potential field navigation

A gradient-following method, such as the potential field method, always suf- fers the
risk of encountering local minima in the field. Of course, in potential

The procedure for assigning the robot’s speed in potential field navigation will be de- scribed
below.

80f course, since the exponential potentials defined in Eq. (6.1) have infinite extension,
the corresponding force never drops exactly to zero, but beyond a distance of a few d, where
d = max(p, y), the force is negligible.

“For an example of such an approach, see Savage et al., Optimization of waypoint-guided potential
field navigation using evolutionary algorithms, Proceedings of the 2004 IEEE/RSJ Inter- national
Conference on Intelligent Robots and Systems (IROS 2004), 3463-3468, 2004.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23

Figure 6.13: The locking phenomenon. Following the gradient of the potential field the robot,
whose trajectory is shown as a sequence of black dots, moves along the x-axis toward the goal,
located at (2, 0). However, because of the local minimum in the potential field, the robot
eventually gets stuck.

field navigation, the goal is to reach the local minimum represented by the navigation
target. However, depending on the shape of the arena (and there- fore the potential
field), there may also appear one or several unwanted local minima in the field, at
which the robot may become trapped.

This is called the locking phenomenon and it is illustrated in Fig. 6.13. Here, a
robot encounters a wedge-shaped obstacle represented by three poten- tials. At a
large distance from the obstacle, the robot will be directed toward the goal potential,
which is located behind the obstacle as seen from the start- ing position of the robot.
However, as the robot approaches the obstacles their repulsive potentials will begin to
be noticeable. Attracted by the goal, the robot will thus eventually find itself stuck inside
the wedge, at a local minimum of the potential.

In order to avoid locking phenomena, the path between the robot and the goal can
be supplied with waypoints, represented by attractive potentials (for example, of the
form given in Eqg. (6.1)) with rather small extension. Of course, the introduction of
waypoints leads to the problem of determining where to

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23t

put them. An analysis of such methods will not be given here®. Suffice it to say that
the problem of waypoint placement can be solved in various ways to aid the robot in
its navigation. A waypoint should be removed once the robot has passed within a
distance L from it, to avoid situations in which the robot finds itself stuck at a waypoint.

The potential field method also has several advantages, one of them being that
the direction of motion is obtained simply by computing the gradient of the potential
field at the current position, without the need to generate an en- tire path from the
current position to the navigation target. Furthermore, the potential field is defined for
all points in the arena. Thus, if the robot tem- porarily must suspend its navigation (for
example, in order to avoid a moving obstacle), it can easily resume the navigation
from wherever it happens to be located when the Obstacle avoidance behavior is
deactivated.

In the discussion above, only stationary obstacles were considered. Of course,
moving obstacles can be included as well. In fact, the potential field method is
commonly used in conjunction with, say, a grid-based navigation method, such that
the latter generates the nominal path of the robot, whereas the potential field method
is used for adjusting the path to avoid moving ob- stacles. However, methods for
reliably detecting moving obstacles are beyond the scope of this text.

Using the potential field method

As mentioned above, the potential field only provides the current desired di- rection of
motion. In order to specify a potential field navigation behavior com- pletely, one must
also provide a method for setting the speed of the robot. This can be done as follows:
Given the robot’s estimated (from odometry) angle of heading ¢.. and the desired
(reference) direction ¢.: (obtained from the po- tential field), one can form the quantity
Ag as

Ad = i — e, (6.4)

The desired speed differential AV (the difference between the right and left wheel
speeds) can then be set according to

AV = KanavA¢, (65)

where K, is a regulatory constant (P-regulation is used) and V.. is the (de- sired) speed
of the robot during normal navigation. Once AV has been com- puted, reference
speeds are sent to the (velocity-regulated) motors according to

VL = ‘/nav - ’ (66)

AV

8See, however, the paper by Savage et al. mentioned in Footnote 6.

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 23!

= V. + AV
VR Viar +) (6.7)

2
where vk and v. are the reference speeds of the left and right wheels, respec- tively.
Note that one can of course only set the desired (reference) speed values; the actual
speed values obtained depend on the detailed dynamics of the robot and its motors.

If the reference angle differs strongly from the estimated heading (which can
happen, for example, in situations where the robot comes sufficiently close to an
obstacle whose potential generates a steep hill), the robot may have to suspend its
normal navigation and instead carry out a pure rotation, setting v. = Vi, vz = Viu for a
left (counterclockwise) rotation, where V.. is the ro- tation velocity, defined along with
V. (@and the other constants) during setup. In case the robot should carry out a
clockwise rotation, the signs are reversed. The direction of rotation is, of course,
determined by the sign of the differ- ence between the reference angle and the
(estimated) heading. In this case, the robot should turn until the difference between the
reference angle and the esti- mated heading drops below a user-specified threshold,
at which point normal navigation can resume.

6.6 Localization

In Sects. 6.1 and 6.2, it was (unrealistically) assumed that the robot’s odome- try
would provide perfect estimates of the pose. In reality, this will never be the case, and
therefore the problem of recalibrating the odometric readings, from time to time, is a
fundamental problem in robotics. Doing so requires a method for localization
independent from odometry, and such methods usu- ally involve LRFs (even though
cameras are also sometimes used), sensors that are difficult to simulate in ARSIim
(because of the large number of rays which would slow down the simulation
considerably). Therefore, in this section, lo- calization will be described as it is
implemented in the simulator GPRSim and in GPRBS, where LRFs are used.

Robot localization requires two brain processes: The cognitive Odometry process
and an independent process for odometric recalibration, which both in GPRSim and
in GPRBS goes under the name Laser localization, since the behavior for odometric
recalibration uses the readings of an LRF, together with a map, to infer its current
location using scan matching, as describedbelow.

In fact, the problem of localization can be approached in many different ways. For
outdoor applications, a robot may be equipped with GPS, which in many cases will
give sufficiently accurate position estimates. However, in indoor applications
(standard) GPS cannot be used, since the signal is too weak to penetrate the walls of
a building. Of course, it is possible to set up a local GPS system, for example by
projecting IR beacons on the ceiling, using which

© 2012, 2016, Mattias Wahde, mattias.wahde@chalmers.se

mailto:mattias.wahde@chalmers.se

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 24(

Figure 6.14: An illustration of the need for localization in mobile robot navigation. In the left
panel, the robot navigates using odometry only. As a result, the odometric trajectory (red)
deviates quite significantly from the actual (green) trajectory. In the right panel, Laser
localization was activated periodically, leading to much improved odometric estimates.

the robot can deduce its position by means of triangulation®. However, such a system
requires that the arena should be adapted to the robot, something that might not
always be desirable or even possible.

The localization method (combining odometry and laser scan matching) that will
be described here is normally used together with some navigation behavior. Thus, the
robotic brain will consist of at least two motor behav- iors, in which case decision-
making also becomes important. This topic will be studied in a later chapter: For now,
the Laser localization behavior will be considered separately.

6.6.1 Laser localization

The behavior is intended for localization in arenas for which a map has been provided
to the robot (in the form of a sequence of lines). The map can ei- ther be obtained
using a robot (executing a Mapping behavior) or, for example, from the floor plan of a
building. The behavior relies on scans of the arena using a two-dimensional LRF and,
like many methods for localization in auto- nomous robots, it assumes that all scans
are carried out in a horizontal plane, thus limiting the behavior to planar (i.e. mostly
indoor) environments. Infact, the name Laser localization is something of a misnomer:
The behavior does not actually carry out (continuous) localization. Instead, when
activated, the behavior takes as input the current pose estimate and tries to improve
it. If

°This is the method used in the Northstar® system, developed by Evolution Robotics, inc.

240

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 24

Figure 6.15: An enlargement of the most significant correction in odometric readings (in the
right panel of Fig. 6.14) resulting from the Laser localization behavior.

successful, the odometric pose is reset to the position suggested by the Laser
localization behavior.

The left panel of Fig. 6.14 illustrates the need for localization: The nav- igation
task shown in Fig. 6.12 was considered again (with the same start- ing point, but a
different initial direction of motion), this time with realistic (i.e. non-zero) levels of noise
in the wheel encoders and, therefore, also in the odometry. As can be seen in the
figure, the odometric drift causes a rather large discrepancy between the actual
trajectory (green) and the odometric es- timate (red). In the right panel, the robotic
brain contained two behaviors (in addition to the cognitive Odometry process), namely
Potential field navigation and Laser localization. The Laser localization behavior was
activatedperiodically (thus deactivating the Potential field navigation behavior), each
time recalibrat- ing (if necessary) the odometric readings. As can be seen in the right
panel of Fig. 6.14, with laser localization in place, the discrepancy between the odo-
metric and actual trajectories is reduced significantly. At one point, the Laser
localization behavior was required to make a rather large correction of the odo- metric
readings. That particular event is shown enlarged in Fig. 6.15. As can be seen, the
odometric readings undergo a discrete step at the moment of lo- calization.

When activated, the localization behavior'® considered here first stops the

105ee Sandberg, D., Wolff, K., and Wahde, M. A robot localization method based on laser scan

241

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 24.

(:
g ,)/

Figure 6.16: Two examples of scan matching. The leftmost panel in each row shows a few
rays (solid lines) from an actual LRF reading (plotted in the map used by the virtual LRF), and
the middle panels show the virtual LRF readings (dotted lines) in a case in which the estimated
pose differs quite strongly from the correct one (upper row), and one in which the difference
is small (bottom row). The direction of heading is illustrated with arrows. The right panel in
each row shows both the actual LRF rays and the virtual ones. The figure also illustrates the
map, which consists of a sequence of lines.

robot, and then takes a reading of the LRF. Next, it tries to match this reading to a
virtual reading taken by placing a virtual LRF (hereafter: vLRF) at various positions in
the map. Two examples of scan matching are shown in Fig. 6.16. The three panels in
the upper row show a situation in which the odometry has drifted significantly. The
upper left panel shows the readings (i.e. laser ray distances) from an actual LRF
mounted on top of the robot (not shown). Note that, for clarity, the figure only shows
a few of the many (typically hundreds) laser ray directions. The upper middle panel
shows the readings of the vLRF, placed at the initial position and heading obtained
from odometry. As can be seen in the upper right panel, the two scans match rather
badly. By contrast, the three panels of the bottom row show a situation in which the
pose error is small. The purpose of the search algorithm described below is to be able
to correct the odometry, i.e. to reach a situation similar to the one shown in the bottom
row of Fig. 6.16. Fig. 6.17 shows another example of a good (left panel) and a bad
(right panel) scan match. In the case shown in the left panel, the

matching, Proc. of AMIRE 2009, pp. 171-178, 2009.

242

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 24

Figure 6.17: Matching of LRF rays (in a different arena than the one used in the examples
above). The readings of the actual LRF are shown in green, and those of the virtual LRF are
shown in red. Left panel: An almost exact match. Right panel: In this case, the odometry has
drifted enough to cause a large discrepancy between the actual and virtual LRF rays.

odometric pose estimate is quite good, so that the rays from the actual LRF (green)
match those of the vLRF quite well, at the current pose estimate. By constrast, in the
situation shown in the right panel, the odometry has drifted significantly.

Scan matching algorithm

Let p = (x, y,) denote a pose (in the map) of the vLRF. The distances between the
vLRF and an obstacle, along ray i, are obtained using the map'' and are de- noted 4.
Similarly, the distances obtained for the real LRF (at its current pose, which normally
differs from p when the localization behavior is activated) are denoted d..

The matching error s between two scans can be defined in various ways. For rays
that do not intersect an obstacle, the corresponding reading (d; or 6,) is (arbitrarily) set
to -1. Such rays should be excluded when computing the error. Thus, the matching

error is taken as
TE g

~.

s = Xi i ’ (6'8)

where n is the number of LRF rays used'?. The parameter y; is equal to one

n practice, the ray reading &; of the vLRF is obtained by checking for intersection between the lines
in the map and a line of length R (the range of the LRF) pointing in the direction of the ray, and then
choosing the shortest distance thus obtained (corresponding to the nearest obstacle along the ray). If
no intersection is found, the corresponding reading is set to-1.

2For example, in the case of a Hokuyo URG-04LX LRF, a maximum of 682 rays are available.

243

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 24.

for those indices i for which boththe real LRF and the vLRF detect an obstacle (i.e.
obtain a reading different from -1) whereas y; is equal to zero for indices i such that
either the real LRF or the vLRF (or both) do not detect any obstacle (outto the range
R of the LRF). v denotes the number of rays actually used in forming the error
measure, i.e. the number of rays for which y; is equal to one. As can be seen, sis a
measure of the (normalized) average relative deviation in detected distances
between the real LRF and the vLRF.

Since d; are given and J; depend on the pose of the vLRF, one may write s = s(p).
Now, if the odometric pose estimate happens to be exact, the virtual and actual LRF
scans will be (almost) identical (depending on the accuracy of the map and the noise
level in the real LRF), resulting in a very small matching error, in which case the
localization behavior can be deactivated and therobot may continue its navigation.
However, if the error exceeds a user-defined threshold 7', the robot can conclude that
its odometric estimates are not suf- ficiently accurate, and it must therefore try to
minimize the matching errorby trying various poses in the map, i.e. by carrying out a
number of virtual scans, in order to determine the actual pose of the robot. The scan
matching problem can thus be formulated as the optimization problem of finding the
pose p = p. that minimizes s = s(p). Once this pose has been found, the new
odometric pose p™ is set equal to p..

Note that it is assumed that the robot is standing still during localization.

This restriction (which, in principle, can be removed) is introduced in order to (i) avoid
having to correct for the motion occuring during the laser sweep, which typically lasts
between 0.01 and 0.1 s and (ii) avoid having to correct for the motion that would
otherwise take place during scan matching procedure, which normally takes a (non-
negligible) fraction of a second. Thus, only one scan needs to be carried out using the
real LRF mounted on the robot. The re- maining work consists of generating virtual
scans in the map, at a sequence of poses, and to match these to the actual LRF
readings. Unlike some other scan matching methods, the method used here does not
attempit to fit lines to the LRF readings. Instead, the LRF rays (actual and virtual, as
described above) are used directly during scan matching. The sequence of poses for
the VLRF is generated as follows: First the actual LRF scan is carried out, generating
the distances d;. Next, a virtual scan is carried out (in the map) at the current estimated
position po. If the error so = s(po) is below the threshold 7', local- ization is complete. If
not, the algorithm picks a random pose p; (where j = 1in the first iteration) in a
rectangular box of size L, L, L4, centered on po in pose space, and computes the
matching error s; = s(p;). The constants L. and L, are typically set to around 0.1 m
and the constant L, is set to around

0.1 radians.

The process is repeated until, for some j =i, an error>§j1 < siis found. At this point,
the rectangular box is re-centered to p;, , and the search continues, now picking a
random pose in the rectangular box centered on p;,. Once a po-

244

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION 24!

A
[A A] [p A A i
—2.05 |- 4 205 -
m o L P m O
r A 1 r 43
[» 1 =210 0 b
—2.10] O 4]
r 38 1
r 18 - + i
e | y A
¢] 4
L 1 H A
215 1 —2as[i
i ges ©
L - A
G
220 1 a0f]
[1 L €]
v L 3‘4 -
12
.25
225 17
24
0.50 0.55 0.60 0.65 0.70 075 0.40 0.45 0.50 055 0.60 0.65

245

Figure6.18: An illustration of the sequence of

PUENSTERES CRIOHR FIBR RAVIGKTION, AND LOCALIZATION

direction of heading). In each panel, the actual
position (measured in meters) of the robot is
indicated with a filled square. The initial
estimated position (i.e. from odometry, before
correction) is shown as a filled disc, and the
final estimated position is visualized as an open
square. The intermediate points generated
during the search are represented as open discs
and are shown together with the corresponding
iteration number. Note that, for clarity, only
some of the intermediate points are shown.

sition p;, is found for which s;, < s;, , the
rectangular box is again re-centered etc.
The procedure is repeated for a given
number (N) of iterations 2.

Even though the algorithm is designed
to improve both the position and the
heading simultaneously, in practice, the
result of running the algorithmis usually to
correct the heading first (which is easiest,
since an error in heading typically has a
larger effect on the scan match than a
position error), as can be seen clearly in
the right panel of Fig. 6.18. At this stage,
the estimated pose can make a rather
large excursion in position space.
However, once a fairly correct heading has
been found, the estimated position
normally converges quite rapidly to the
correct position.

246

CHAPTER 6. EXPLORATION, NAVIGATION, AND LOCALIZATION

7.

8.

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

References

Ademco, “Quad Passive Infrared Motion Dan:etch,” 1989 Security
Sourcebook: The Ademco Catalog of Praducts. P6715, Adeoico Alarm
Device Manufacturing Company, Syosset, NY, May, 1989.

Alpha, “Theory, Operation, and Application of Microwave
Motion Sensing Modules,” Sensors, pp. 29-36, December,
1987.

Bancroft, A.J., "The First Commercial Floor Care Company that
Ventured into the Production of Robotics,” Conference on
Intelligent Robotics in Field, Pactory, Service, and Space,
CIRFFSS '94, Houston, TX, pp. 669-674, March, 1994.
Barron, W.R., 'be Principles of Infrared Thermometry,”
Sensors, pp. 10-19, Oecmber, 1992.

Buschling, R., “Understanding aad Applying IR Temperature
Sensors,” Sensors,

pp. 32-37. October, 1994.

Byler, E., “Intelligent Mobile Sensor System for Drum
Inspection and Monitoring," Phase | Topical Report, DOE
Contract D£i-AC21-92MC29112. Martin Marietta Asronautics
Group, Littleton, CO, June, 1993.

Cima, D., “Using Lithium Tantalate Pyroelectric Detectors in
Robotics Applications," Eliecdata If 112, Eltec Instruments,
Inc.. Daytona Beach, FL, 1984.

Cima, D., “Using Optical Radiation for Security," Eltecdata
#124, Eltec

Instruments, Inc., Daytona Beach, FL, December, 1990.

Cima, D., “Surveillance Applications of the Eltec Model 862
Passive Infrared Telescope,” Eltecdata fI28. Eltec Instruments,
Inc., Daytona Beach, FL, June, 1992.

Eltec, “Introduction to Infrared Pyroelectric Detectors,”
Eltecdata #100, Eltec Instruments, Inc., Daytona Beach, FL,
1984.

247

20. Eltec, “Model 442 IR-Eye Integrated Sensor," Preliminary

Product Literature, Rltec Instruments, Inc., Daytona Beach,
CHAW@@ po&XPLORATION, NAVIGATION, AND LOCALIZATION

21. Eltec, “Model AR170, 32 Element Pyroelectric Array,” Product
Literature, Elicc Instruments, Inc., Daytona Beach, FL,
December, 1993.

22. Everett, H.R., “A Computer Controlled Sentry Robot,"

Robotics Agi
MarchfApril, 1982a.

23. Rverett, H.R., “A Microprocessor Controlled Autonomous
Sentry Robot”, Masters Thesis, Naval Postgraduate School,
Monterey, CA, October 1982b.

24. Everett, H.R., “Security and Sentry Robots", International Encyclopedia of

25. Robotics Applications ond Automation, R-C. Oorf, a<L, John Wiley. pp.
1462- 1476, March. 1988.

26. Everett, H.R., Gilbieath, G.A., Alderson, S.L., Priebe, C.,
Marchette. D.,

27. “Intelligent Security Assessment for a Mobile Sentry Robot”,
Proceedings, 29th Annual Meeting. Institute for Nuclear
Materials Management, Las Vegas, NV, June, 1988.

248

28. Chapter 17 Applicséoo-Specific |\4tssloa SeasDz6 511

“‘Modeling the Environment of a Mobile Security Robot,”
Technical Documg@é an1835, Naval Command Control and

Surveillance Center. San Diego, CA,
June, 1990.

31. Gage, D.W., Everett, H.R.. Laird, R.T., Heath-Pastors, T.A.,
“Navigating Multiple Robots in Semi-Structured
Environments.” ANS 6th Topical Meeting on Robotics and
Remote Systems, Monterey, CA, February, 1995.

32. Gailo, M.A., Willies, D.S., Lubke, R.A., Thiede, E.C., “Lnw Cost

Uncooked m Xl
33. Sensor for Battlefield Surveillance,” SPIB Infrared 35.V
Technology 2020, San Diego, CA, July, 1993. o}

34. George. S.C., “Robot Revival,” Security, pp. 12-13, I
June, 1992.

36. Gontowski, W., “Build a Motion Detector Alarm,” Electronic Experimenter’s
Handbook pp. 56-64, 1983.

37. Hansford, A., AD9502 Video Signal Digitizer and its
Application”, Analog Devices Application Note Cl 100-9-7{87.
Norwood, MA, July. 1987.

38. Hansen, C., Beratan, H., Owen. R.. Gorbin, M., McKenney, S.,
“‘Uncooled Thermal Imaging at Texas Instruments,” SPIE
Infrared Technology XVBI. Vol. 1735, San Diego, CA, pp. 17-
26. July, 1992.

39. Hanson. C.. Beratan, H., Oven, R., Sweetser, K.. “Low-Cost
Uncooled Pocal Plane Array Technology,” Detector IRIS
Meeting, Bedford, MA, August, 1993.

40. Hanson, C., Beratan, H. “Uncooked Pyroelectric Thermal
Imaging,” International Symposium on Applications of
Ferroelectrics, 1994.

41. Heckendorn, F.M., Ward, C.W., Wagner. D.G., “Remote
Radioactive Waste Orum Inspection with an Autonomouc
Mobile Robot," ANS Fifth Topical Meeting on Robotics and
Remote Systems, Amencan Nuclear Society, Knoxville, TN,
pp. 487-492, Apri), 1993.

42. Holland, J.M., “An Army of Robots Roams the Night,”
International Robot and Vision Automation Show and
Conference, Detroit, MI, pp. 17.1-17.12, April, 1993.

43. I5RA, “Military Finds Big Cost Savings from Mobile Robotics,”

249

44.

45.

46.

47.
48.

ISRA News, Newsletter of the International Service Robot
Association, Ann Arbor, M, Fall, 1994.
Jones. J.L., Flynn, A.M., Mabile Robots.- Inspiration to Implememation, AK

GHAPTER B EXBLORATIANSMAVIGATION, AND LOCALIZATION

King, S.J., Weiman, C.F.R., “HelpMaie Autonomous Mobile
Robot Navigation System," SPIE Vol. 1388, Mobile Robots V,
Boston, MA, pp. 190-198, November, 1990.

La wlot, M., “Microciicuit Technology Improves Readiness,
Saves Resources,” Signal, Armed Forces Communications and
Electronics Association, August, 1993.

MacLeod, E.N., Chiarella, M., “Navigation and Control
Breakthrough for

Automated Mobiti'ty," Proceedings, SPIE Mobile Robots VIB,
Vol. 2058, pp. 57-68, 1993.

250

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.
59.
60.
61.

62.

63.

64.

65.

66.

Mattaboni CHARARR fidattf SHRAE MR VIC AN A MRS A AP

Conference on Intelligent Robotics in Field, Factory, Service, and Space,
CIRFFSS '94, Houston, TX, pp. 405-406. March, 1994.

Mims, F.M., Forrest firms Circuit Scrapbook I, Howard W. Sams, Indianapolis, IN, pp. 170-171,
1987.

Nippon, “Pyroelectric Infrared Sensor.” Nippon Ceramics Technical Information TI-
101, McGee Components, Inc, North Attleboto, MA, undated.

Nippon, “Pyrosensor," Nippon Ceramics Product Literature PE 1001-1091,
McGee Components, Inc, North Attlebom, MA, October. 1991.

Philips, “Ceramic Pyroetectric Infrared Sensors and Their Applications,” Philips
Technical Publication 163, Philips Semiconductors, Slatersville Division.
Smithfield, RI, 1985.

Philips, "Movement Sensing Using a Multi-Element Fresnel Lens," Philips
Semiconductors, SJateisvil)e Division, Smithfield, RI, April, 1986.

Quick, C.. “Animate vs. Inanimate," Robotics Age, VOI. 6. No, 9, August, 1984.
RST, “Surrogate Teleoperated
Vehicle (STV) Technical Manual,” Robotic

Systems Technology, Westminster, MD, Contract No. N66tD1-91-C-6tD07,
CDRL ltem BOOI, Final Issue. 15 September, 1993.

Russell, 1 A.. “Mobile Robot Guidance Using a Short-Lived Heat Trail.”
Robotics, Vol. 11. Cambridge Ptess, pp. 427-431. 1993.

Savi, “The Savi Asset Management System,” Product Brochure, Savi
Technology, Inc., Mountain View, CA, 1993.

Savi. “System Components,” Product Literature, Savi Technology, Inc., Mountain
View, CA, April, 1994a.

Savi, “Savi Technology Ordering Guide.” First £ldition, Radio Frequency
Identification Equipment Contract No. F33600-94-D-0077, Savi Technology, Inc.,
Mountain View, CA, November, 1994b.

Smurlo, R.P., Everett, H.R., “Intelligent Sensor Pusion for a Mobile Security
Robot,” Sensors, pp. 18-28, June, 1993.

Smurlo, R.P., Laird, R.T., Elaine, S., Jaffee, D.M., 'Hire MDARS Product
Assessment System,” Association of Unmanned Vehicle Systems, 22nd Annual
Technical Symposium and Exhibition, Washington, DC, July. 1995.

Tl, “Nighisight Thermal Vision System," Produet Literature, Texas Instruments, Inc.,
Attleboro, MA, November, 1994.

Tom, E., “Polymer Film Arrays in Pyroelectric Applications,” Sensors, pp. 75- 77,
September, 1994.

67. Viggh, H.E.M., Flynn, A.M., “Infrared People Sensors for Mobile Robots," SPIE

68.

69.

Vol. 1007, Mobile Robots Ill, Cambridge, MA, pp. 391-398, November. 1988.
Weiss, M.. “Protect Your Valuables - Ligbt Sensitive Security Alert,” fundic
Elecvonics, April, 1979.

Williams. H., “Proximity Sensing with Microwave Technology," Sensors, pp. 6-

251

15, J , 1989.
70, wiliams, HCHART ERc> BXRIGRATI O OWMIG ATIRM N ADALTEATIN

71. pp. 26-28, May, 1997.

Books

[1] Adams, M.D., Sensor Modelling, Design and Data Processing for Autonomous
Navigation. World Scientific Series in Robotics and Intelligent Systems. Singapore,
World Scientific Publishing Co. Ltd., 1999.

2] Arkin, R.C., Behavior-Based Robotics. Cambridge MIT Press, MA, 1998.

[3] Bar-Shalom, Y., Li, X.-R., Estimation and Tracking: Principles, Techniques, and
Software. Norwood, MA, Artech House, 1993.

[4] Borenstein, J., Everet,t H.R., Feng, L., Navigating Mobile Robots, Systems and
Techniques. Natick, MA, A.K. Peters, Ltd., 1996.

[5] Borenstein, J., Everett, H.R., Feng, L., Where Am [? Sensors and Methods for
Mobile Robot Positioning. Ann Arbor, University of Michigan. Available at http://
www-personal.engin.umich.edu/~johannb/position.htm.

[6] Breipohl, A.M., Probabilistic Systems Analysis: An Introduction to Probabilistic
Models, Decisions, and Applications of Random Processes. New York, John Wiley &
Sons, 1970.

[7] Bundy, A. (editor), Artificial Intelligence Techniques, a Comprehensive Catalogue.
New York, Springer-Verlag, 1997.

[8] Canudas de Wit, C., Siciliano, B., and Bastin G. (editors), Theory of Robot Control.
New York, Spinger-Verlag, 1996.

[9] Carroll, R.J., Ruppert, D., Transformation and Weighting in Regression. New York,
Chapman and Hall, 1988.

[10] Cox, I.J., Wilfong, G.T. (editors), Autonomous Robot Vehicles. New York, Spinger-
Verlag, 1990.

[11] Craig, J.J., Introduction to Robotics: Mechanics and Control. 2nd edition. Boston,
Addison-Wesley, 1989.

[12] de Silva, C.W., Control Sensors and Actuators. Upper Saddle River, NJ, Prentice
Hall, 1989.

[13] Dietrich, C.F., Uncertainty, Calibration and Probability. Bristol, UK, Adam Hilger,
1991.

[14] Draper, N.R., Smith, H., Applied Regression Analysis. 3rd edition. New York, John
Wiley & Sons, 1988.

[15] Everett, H.R., Sensors for Mobile Robots, Theory and Applications. New York, Nat-
ick, MA, A.K. Peters, Ltd., 1995.

252

Bibliography 253

[16] Faugeras, O., Three-Dimensional Computer Vision, a Geometric Viewpoint. Cam-
pridge MIT Press, MA, 1993.

[17] Genesereth, M.R., Nilsson, N.J., Logical Foundations of Artificial Intelligence. Palo
Alto, CA, Morgan Kaufmann, 1987.

[18] Haralick, R.M., Shapiro, L.G., Computer and Robot Vision, 1+2. Boston, Addison-
Wesley, 1993.

[19] Jones, J., Flynn, A., Mobile Robots, Inspiration to Implementation. Natick, MA,
A.K. Peters, Ltd., 1998. [also available in German and French].

[20] Kortenkamp, D., Bonasso, R.P., Murphy, R.R. (editors), Artificial Intelligence and
Mobile Robots; Case Studies of Successful Robot Systems. Cambridge, MA, AAAI
Press / MIT Press, 1998.

[21] Latombe, J.-C., Robot Motion Planning. Norwood, MA, Kluwer Academic Publish-
ers, 1991.

[22] Lee, D., The Map-Building and Exploration Strategies of a Simple Sonar-Equipped
Mobile Robot. Cambridge, UK, Cambridge University Press, 1996.

[23] Leonard, J.E., Durrant-Whyte, H.F., Directed Sonar Sensing for Mobile Robot Nav-
igation. Norwood, MA, Kluwer Academic Publishers, 1992.

[24] Manyika, J., Durrant-Whyte, H.F., Data Fusion and Sensor Management: A Decen-
tralized Information-Theoretic Approach. Ellis Horwood, 1994.

[25] Mason, M., Mechanics of Robotics Manipulation. Cambridge, MA, MIT Press,
2001.

[26] Murphy, R.R., Introduction to Al Robotics. Cambridge, MA, MIT Press, 2000.

[27] Nourbakhsh, I., Interleaving Planning and Execution for Autonomous Robots, Nor-
wood, MA, Kluwer Academic Publishers, 1997.

[28] Raibert, M.H., Legged Robots That Balance, Cambridge, MA, MIT Press, 1986.

[29] Ritter, G.X., Wilson, J.N., Handbook of Computer Vision Algorithms in Image Alge-
bra. Boca Raton, FL, CRC Press, 1996.

[30] Russell, S., Norvig, P., Artificial Intelligence, a Modern Approach. Prentice Hall
International, 1995.

[31] Schraft, R.-D., Schmierer, G., Service Roboter. Natick, MA, A.K. Peters, Ltd, 2000.
[also available in German from Springer-Verlag].

[32] Sciavicco, L., Siciliano, B., Modeling and Control of Robot Manipulators. New York,
McGraw-Hill, 1996.

[33] Todd, D.J, Walking Machines, an Introduction to Legged Robots. Kogan Page Ltd,
1985.

Papers

[34] Aho, A.V., “Algorithms for Finding Patterns in Strings,” in J. van Leeuwen (editor),
Handbook of Theoretical Computer Science, Cambridge, MA, MIT Press, 1990,
Volume A, chapter 5, 255-300.

[35] Arras, K.O., Castellanos, J.A., Siegwart, R., “Feature-Based Multi-Hypothesis

Localization and Tracking for Mobile Robots Using Geometric Constraints,” in
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA’2002), Washington, DC, May 11-15, 2002.

253

Bibliography 254

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

(45]

[46]

[47]

(48]

[49]

[50]

[51]

Arras,K.O., Persson, J., Tomatis, N., Siegwart, R., “Real-Time Obstacle Avoidance for
Polygonal Robots with a Reduced Dynamic Window,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA 2002), Wash- ington,
DC, May 11-15, 2002.

Arras, K.O., Siegwart, R.Y., “Feature Extraction and Scene Interpretation for Map-
Based Navigation and Map Building,” in Proceedings of SPIE, Mobile Robotics X,
Vol. 3210, 1997, 42-53,.

Arras, K.O., Tomatis, N., “Improving Robustness and Precision in Mobile Robot
Localization by Using Laser Range Finding and Monocular Vision,” in Proceedings of
the Third European Workshop on Advanced Mobile Robots (Eurobot 99), Zurich,
September 69, 1999.

Astolfi, A., “Exponential Stabilization of a Mobile Robot,” in Proceedings of 3rd
European Control Conference, Rome, September 1995.

Barnard, K., Cardei V., Funt, B., “A Comparison of Computational Color Constancy
Algorithms.” IEEE Transactions in Image Processing. 11: 972—984, 2002.

Barron, J.L., Fleet, D.J., Beauchemin, S.S., “Performance of Optical Flow Tech-
niques.” International Journal of Computer Vision, 12:43—77,1994.

Batavia, P., Nourbakhsh, I., “Path Planning for the Cye Robot,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’00), Takamatsu, Japan, November, 2000.

Borenstein, J., Koren, Y., “The Vector Field Histogram — Fast Obstacle Avoidance for
Mobile Robots.” IEEE Journal of Robotics and Automation, 7, 278-288, 1991.

Brock, O., Khatib, O., “High-Speed Navigation Using the Global Dynamic Window
Approach,” in Proceeding of the IEEE International Conference on Robotics and
Automation, Detroit, May 1999.

Brooks, R., “A Robust Layered Control System for a Mobile Robot,” IEEE Trans-
actions of Robotics and Automation, RA-2:14-23, March 1986.

Brown, H.B., Zeglin, G.Z., “The Bow Leg Hopping Robot", in Proceedings of the IEEE
International Conference on Robotics and Automation, Leuwen, Belgium, May
1998.

Bruce, J., Balch,T., and Veloso, M., “Fast and Inexpensive Color Image Segmenta-
tion for Interactive Robots,” in Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS’00), Takamatsu, Japan, October 31—
November 5, 2000.

Burgard,W., Cremers, A., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner, W.,
Thrun, S., “Experiences with an Interactive Museum Tour-Guide Robot,” Arti- ficial
Intelligence, 114, 1-53, 2000.

Burgard, W., Derr, A., Fox, D., Cremers, A., “Integrating Global Position Estima-
tion and Position Tracking for Mobile Robots: The Dynamic Markov Localization
Approach,” in Proceedings of the 1998 IEEE/RSJ International Conference of Intel-
ligent Robots and Systems (IROS’98), Victoria, B.C., Canada, October 1998.
Burgard, W., Fox, D., Henning, D., “Fast Grid-Based Position Tracking for Mobile
Robots,” in Proceedings of the 21th German Conference on Artificial Intelligence
(KI197), Freiburg, Germany, Springer-Verlag, 1997.

Burgard, W., Fox, D., Jans, H., Matenar, C., Thrun, S., “Sonar-Based Mapping of
Large-Scale Mobile Robot Environments using EM,” in Proceedings of the Interna-
tional Conference on Machine Learning, Bled, Slovenia, 1999.

254

Bibliography 255

[52]

(53]

[54]

[55]

(561

[57]

(58]

[59]

[60]

(61]

(62]

[63]
[64]

[65]

[66]

[67]

Campion, G., Bastin, G., D’Andréa-Novel, B., “Structural Properties and Classifi-
cation of Kinematic and Dynamic Models of Wheeled Mobile Robots.” IEEE Trans-
actions on Robotics and Automation, 12, No. 1, 47—62,1996.

Canudas de Wit, C., Sordalen, O.J)., “Exponential Stabilization of Mobile Robots
with Nonholonomic Constraints.” IEEE Transactions on Robotics and Automation,
37,1791-1797, 1993.

Caprari, G., Estier, T., Siegwart, R., “Fascination of Down Scaling—Alice the Sugar
Cube Robot.” Journal of Micro-Mechatronics, 1, 177—-189,2002.

Castellanos, J.A., Tardos, J.D., Schmidt, G., “Building a Global Map of the Envi-
ronment of a Mobile Robot: The Importance of Correlations,” in Proceedings of the
1997 IEEE Conference on Robotics and Automation, Albuquerque, NM, April
1997.

Chen, C.T., Quinn, R.D., “A Crash Avoidance System Based upon the Cockroach
Escape Response Circuit,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Albuquerque, NM, April 1997.

Chenavier, F., Crowley, J.L., “Position Estimation for a Mobile Robot Using Vision
and Odometry,” in Proceedings of the IEEE International Conference on Robotics
and Automation, Nice, France, May 1992.

Chong, K.S., Kleeman, L., “Accurate Odometry and Error Modelling for a Mobile
Robot,” in Proceedings of the IEEE International Conference on Robotics and Auto-
mation, Albuquerque, NM, April 1997.

Choset, H., Walker, S., Eiamsa-Ard, K., Burdick, J., “Sensor-Based Exploration:
Incremental Construction of the Hierarchical Generalized Voronoi Graph.” The
International Journal of Robotics Research, 19, 126—148,2000.

Cox, 1.J., Leonard, J.J., “Modeling a Dynamic Environment Using a Bayesian Mul-
tiple Hypothesis Approach.” Artificial Intelligence, 66, 311-44, 1994.

Dowlingn, K., Guzikowski, R., Ladd, J., Pangels, H., Singh, S., Whittaker, W.L.,
“NAVLAB: An Autonomous Navigation Testbed.” Technical report CMU-RI-TR- 87-
24, Robotics Institute, Pittsburgh, Carnegie Mellon University, November 1987.

Dugan, B., “Vagabond: A Demonstration of Autonomous, Robust Outdoor Naviga-
tion,” in Video Proceedings of the IEEE International Conference on Robotics and
Automation, Atlanta, GA, May 1993.

Elfes, A., “Sonar-Based Real World Mapping and Navigation,” in[10].

Ens, J., Lawrence, P., “An Investigation of Methods for Determining Depth from
Focus.” IEEE Transactions. on Pattern Analysis and Machine Intelligence, 15: 97—
108, 1993.

Espenschied, K. S., Quinn, R. D., “Biologically-Inspired Hexapod Robot Design and
Simulation,” in AIAA Conference on Intelligent Robots in Field, Factory, Ser- vice
and Space, Houston, Texas, March 20-24,1994.

Falcone, E., Gockley, R., Porter, E., Nourbakhsh, 1., “The Personal Rover Project:
The Comprehensive Design of a Domestic Personal Robot,” Robotics and Autono-
mous Systems, Special Issue on Socially Interactive Robots, 42, 245-258, 2003.

Feder, H.J.S., Slotin, J-J.E., “Real-Time Path Planning Using Harmonic Potentials in
Dynamic Environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Albuquerque, NM, April 1997.

255

Bibliography 256

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

[79]

[80]

[81]

[82]

[83]

Fox, D., “KLD-Sampling: Adaptive Particle Filters and Mobile Robot Localiza- tion.”
Advances in Neural Information Processing Systems 14. MIT Press, 2001.

Fox, D., Burgard,W., Thrun, S., “The Dynamic Window Approach to Collision
Avoidance.” IEEE Robotics and Automation Magazine, 4:23-33, 1997.

Gander,W., Golub, G.H., Strebel, R., “Least-Squares Fitting of Circles and Ellipses.”
BIT Numerical Mathematics,vol.34,no.4, pp.558-578, December 1994.

Genesereth, M.R. “Deliberate Agents.” Technical Report Logic-87-2. Stanford, CA,
Stanford University, Logic Group, 1987.

Golub, G., Kahan,W., “Calculating the Singular Values and Pseudo-Inverse of a
Matrix.” Journal SIAM Numerical Analysis, 2:205-223, 1965.

Gutmann, J.S., Burgard, W., Fox, D., Konolige, K., “An Experimental Comparison of
Localization Methods,” in Proceedings of the 1998 IEEE/RSJ International. Con-
ference of Intelligent Robots and Systems (IROS’98), Victoria, B.C., Canada, Octo-
ber 1998.

Guttman, J.S., Konolige, K., “Incremental Mapping of Large Cyclic Environments,” in
Proceedings of the IEEE International Symposium on Computational Intelligence in
Robotics and Automation (CIRA), Monterey, November 1999.

Hashimoto, S., “Humanoid Robots in Waseda University - Hadaly-2 and WABIAN,”
in IARP First International Workshop on Humanoid and Human Friendly
Robotics, Tsukuba, Japan, October 1998.

Heale, A., Kleeman, L.: “A Real Time DSP Sonar Echo Processor,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’00), Takamatsu, Japan, October 31-November 5,2000.

Horn, B.K.P., Schunck, B.G., “Determining Optical Flow,” Artificial Intelligence,
17:185-203, 1981.

Horswill, 1., “Visual Collision Avoidance by Segmentation,” in Proceedings of IEEE
International Conference on Robotics and Automation, 902—909, 1995, IEEE Press,
Munich, November 1994.

Jacobs, R. and Canny, J., “Planning Smooth Paths for Mobile Robots,” in Proceed-
ing. of the IEEE Conference on Robotics and Automation, |IEEE Press, 1989, pp. 2—7.

Jennings, J., Kirkwood-Watts, C., Tanis, C., “Distributed Map-making and Naviga-
tion in Dynamic Environments,” in Proceedings of the 1998 IEEE/RSJ Intl. Confer-
ence of Intelligent Robots and Systems (IROS’98), Victoria, B.C., Canada, October
1998.

Jensfelt, P., Austin, D., Wijk, O., Andersson, M., “Feature Based Condensation for
Mobile Robot Localization,” in Proceedings of the IEEE International Conference on
Robotics and Automation, San Francisco, May 24-28,2000.

Kamon, I., Rivlin, E., Rimon, E., “A New Range-Sensor Based Globally Conver- gent
Navigation Algorithm for Mobile Robots,” in Proceedings of the IEEE Inter-
national Conference on Robotics and Automation, Minneapolis, April 1996.

Kelly, A., “Pose Determination and Tracking in Image Mosaic Based Vehicle Posi-
tion Estimation,” in Proceeding of the IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS’00), Takamatsu, Japan, October 31-November 5,
2000.

256

310

[84]

[85]

[86]

[87]

(88]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

[96]

(971

(98]

[99]

Bibliography

Khatib, M., Chatila, R., “An Extended Potential Field Approach for Mobile Robot
Sensor-Based Motions,” in Proceedings of the Intelligent Autonomous Systems IAS-
4, 10S Press, Karlsruhe, Germany, March 1995, pp.490-496.

Khatib, M., Jaouni, H., Chatila, R., Laumod, J.P., “Dynamic Path Modification for
Car-Like Nonholonomic Mobile Robots,” in Proceedings of IEEE International
Conference on Robotics and Automation, Albuquerque, NM, April 1997.

Khatib, O., Quinlan, S., “Elastic Bands: Connecting, Path Planning and Control,” in
Proceedings of IEEE International Conference on Robotics and Automation,
Atlanta, GA, May 1993.

Ko, N.Y., Simmons, R., “The Lane-Curvature Method for Local Obstacle Avoid-
ance,” in Proceedings of the 1998 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’98), Victoria, B.C., Canada, October 1998.

Koenig, S., Simmons, R., “Xavier: A Robot Navigation Architecture Based on Par-
tially Observable Markov Decision Process Models,” in[20]

Konolige, K.,. “A Gradient Method for Realtime Robot Control,” in Proceedings of
the IEEE/RSJ Conference on Intelligent Robots and Systems, Takamatsu, Japan,
2000.

Konolige, K., “Small Vision Systems: Hardware and Implementation,” in Proceed-
ings of Eighth International Symposium on Robotics Research, Hayama, Japan,
October 1997.

Koperski, K., Adhikary, J., Han, J., “Spatial Data Mining: Progress and Challenges
Survey Paper,”. in Proceedings of the ACM SIGMOD Workshop on Research Issues
on Data Mining and Knowledge Discovery, Montreal, June 1996.

Koren, Y., Borenstein, J., “High-Speed Obstacle Avoidance for Mobile Robotics,” in
Proceedings of the IEEE Symposium on Intelligent Control, Arlington, VA, August
1988, pp. 382-384.

Koren, Y., Borenstein, J., “Real-Time Obstacle Avoidance for Fast Mobile Robots in
Cluttered Environments,” in Proceedings of the IEEE International Conference on
Robotics and Automation, Los Alamitos, CA, May 1990.

Kuipers, B., Byun, Y.-T., “A Robot Exploration and Mapping Strategy Based on a
Semantic Hierarchy of Spatial Representations.” Journal of Robotics andAutono-
mous Systems, 8:47—63, 1991.

Lamon, P., Nourbakhsh, I., Jensen, B., Siegwar,t R., “Deriving and Matching Image
Fingerprint Sequences for Mobile Robot Localization,” in Proceedings of the 2001
IEEE International Conference on Robotics and Automation, Seoul, Korea, May
21-26, 2001.

Latombe, J-C., Barraquand, J., “Robot Motion Planning: A Distributed Presentation
Approach.” International Journal of Robotics Research, 10: 628—-649, 1991.

Lauria, M., Estier, T., Siegwart, R.: “An Innovative Space Rover with Extended
Climbing Abilities.” in Video Proceedings of the 2000 IEEE International Confer-
ence on Robotics and Automation, San Francisco, May 24-28, 2000.

Lazanas, A., Latombe, J.-C., “Landmark-Based Robot Navigation,” in Proceedings of
the Tenth National Conference on Al. San Jose, CA, July 1992.

Lazanas, A. Latombe, J.C., “Motion Planning with Uncertainty: A Landmark
Approach.” Artificial Intelligence, 76:285-317, 1995.

257

310

[100]

[101]

[102]

[103]

[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

Bibliography

Lee, S.-0O., Cho, Y.-J., Hwang-Bo, M., You, B.-J.,, Oh, S.-R.: “A Stabile Target-
Tracking Control for Unicycle Mobile Robots,” in Proceedings of the 2000 IEEE/ RSJ
International Conference on Intelligent Robots and Systems, Takamatsu, Japan,
October 31-November 5, 2000.

Lumelsky, V., Skewis, T., “Incorporating Range Sensing in the Robot Navigation
Function.” IEEE Transactions on Systems, Man, and Cybernetics, 20:1990, pp.
1058-1068.

Lumelsky, V., Stepanov, A., “Path-Planning Strategies for a Point Mobile Automa-
ton Moving Amidst Unknown Obstacles of Arbitrary Shape,” in[10].

Maes, P., “The Dynamics of Action Selection,” in Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, Detroit, 1989, pp. 991—
997.

Maes, P., “Situated Agents Can Have Goals,” Robotics and Autonomous Systems, 6:
49-70. 1990.

Martinelli, A., Siegwart, R., “Estimating the Odometry Error of a Mobile Robot
during Navigation," in Proceedings of the European Conference on Mobile Robots
(ECMR 2003), Warsaw, September 4—6, 2003.

Maybeck,P.S., “The Kalman Filter: An Introduction to Concepts,” in[10].

Minguez, J., Montano, L., “Nearness Diagram Navigation (ND): A New Real Time
Collision Avoidance Approach,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, Takamatsu, Japan, October 2000.

Minguez, J., Montano, L., “Robot Navigation in Very Complex, Dense, and Clut-
tered Indoor/Outdoor Environments,” in Proceeding of International Federation of
Automatic Control (IFAC2002), Barcelona, April 2002.

Minguez, J., Montano, L., Khatib, O., “Reactive Collision Avoidance for Naviga-
tion with Dynamic Constraints,” in Proceedings of the 2002 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2002.

Minguez, J., Montano, L., Simeon, T., Alami, R., “Global Nearness Diagram Navi-
gation (GND),” in Proceedings of the 2001 IEEE International Conference on
Robotics and Automation, 2001.

Montano, L., Asensio, J.R., “Real-Time Robot Navigation in Unstructured Environ-
ments Using a 3D Laser Range Finder,” in Proceedings of the IEEE/RSJ Interna-
tional Conference on Intelligent Robot and Systems, IROS 97, IEEE Press, Vol. 2.
Grenoble, France, September 1997, pp. 526-532.

Moravec, H. and Elfes, A.E., “High Resolution Maps from Wide Angle Sonar,” in
Proceedings of the 1985 IEEE International Conference on Robotics and Automa-
tion, IEEE Press, At.-Louis, MO, March 1985, pp.116-121.

Moutarlier, P., Chatila, R., “Stochastic Multisensory Data Fusion for Mobile Robot
Location and Environment Modelling,” in Proceedings of the 5th International
Symposium of Robotics Research, Tokyo, 1989, pp.207-216.

Nayar, S.K., “Catadioptric Omnidirectional Camera.” IEEE CVPR, pp. 482-488,
1997.

Nilsson, N.J., “Shakey the Robot.” SRI, International, Technical Note, Menlo Park,
CA, 1984, No. 325.

Nourbakhsh, I.R., “Dervish: An Office-Navigation Robot,” in[20].

258

Bibliography 259

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]
[132]

[133]

Nourbakhsh, I.R., Andre. D., Tomasi, C., Genesereth, M.R., “Mobile Robot Obsta-
cle Avoidance via Depth from Focus,” Robotics and Autonomous Systems, 22:151—
158, 1997.

Nourbakhsh, I.R., Bobenage, J., Grange, S., Lutz, R.,, Meyer, R, Soto, A., “An
Affective Mobile Educator with a Full-Time Job.” Artificial Intelligence, 114:95—
124, 1999.

Nourbakhsh, I.R., Powers, R., Birchfield, S., “DERVISH, an Office-Navigation
Robot.” Al Magazine, 16:39-51, summer 1995.

Pell, B., Bernard, D., Chien, S., Gat, E., Muscettola, N., Nayak, P., Wagner, M.,
Williams, B., “An Autonomous Spacecraft Agent Prototype.” Autonomous Robots,
No. 5, 1-27, 1998.

Pentland, A.P., “A New Sense for Depth of Field.” IEEE Transactions onPattern
Analysis and Machine Intelligence (PAMI), 9:523-531, 1987.

Philippsen, R., Siegwart, R., “Smooth and Efficient Obstacle Avoidance for a Tour
Guide Robot,” in Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA 2003), Taipei, Taiwan, 2003.

Pratt, J., Pratt, G., “Intuitive Control of a Planar Bipedal Walking Robot,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation (ICRA
'98), Leuven, Belgium, May 16-21, 1998

Raibert, M. H., Brown, H. B., Jr., Chepponis, M., “Experiments in balance with a
3D One-Legged Hopping Machine.” International Journal of Robotics Research,
3:75-92, 1984.

Ringrose, R., “Self-Stabilizing Running,” in Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA '97), Albuquerque, NM, April 1997.

Rowe, A., Rosenberg, C., Nourbakhsh, ., “A Simple Low Cost Color Vision Sys-
tem,” in Proceedings of Tech Sketches for CVPR 2001. Kuaii, Hawaii, December
2001.

Rubner, Y., Tomasi, C., Guibas, L., “The Earth Mover’s Distance as a Metric for
Image Retrieval,” STAN-CS-TN-98-86, Stanford University, 1998.

Schlegel, C., “Fast Local Obstacle under Kinematic and Dynamic Constraints,” in
Proceedings of the IEEE International Conference on Intelligent Robot and Systems
(IROS 98), Victoria, B.C. Canada 1998, pp. 594-599.

Schultz, A., Adams, W., “Continuous Localization Using Evidence Grids,” in Pro-
ceedings of the IEEE International Conference on Robotics and Automation
(ICRA’98), May 16-21, 1998, Leuven, Belgium, pp.2833-2839 [also available as
NCARAI Report AIC-96-007].

Schweitzer, G., Werder, M., “ROBOTRAC — a Mobile Manipulator Platform for
Rough Terrain,” in Proceedings of the International Symposium on Advanced Robot
Technology (ISART), Tokyo, Japan, March, 1991.

Shi, J., Malik, J., “Normalized Cuts and Image Segmentation.” IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI), 82:888—905, 2000.

Siegwart R., et al., (2003) “Robox at Expo.02: A Large Scale Installation of Personal
Robots.” Journal of Robotics and Autonomous Systems, 42:203-222, 2003.
Siegwart, R., Lamon, P., Estier, T., Lauria, M, Piguet, R., “Innovative Design for
Wheeled Locomotion in Rough Terrain,” Journal of Robotics and Autonomous Sys-
tems, 40:151-162, 2002.

259

Bibliography 260

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

Simhon, S., Dudek, G., “A Global Topological Map Formed by Local Metric Maps,”
in Proceedings of the 1998 IEEE/RSJ International Conference on Intelli- gent
Robots and Systems (IROS’98), Victoria, B.C., Canada, October 1998.

Simmons, R., “The Curvature Velocity Method for Local Obstacle Avoidance,” in
Proceedings of the IEEE International Conference on Robotics and Automation,
Minneapolis, April 1996.

Smith, R., Self, M., Cheeseman, P., “Estimating Uncertain Spatial Relationships in
Robotics,” Autonomous Robot Vehicles, |I.). Cox and G. T. Wilfong (editors),
Springer-Verlag, 1990, pp. 167-193.

Sordalen, O.J., Canudas de Wi,t C., “Exponential Control Law for a Mobile Robot:
Extension to Path Following,” IEEE Transactions on Robotics and Automation,
9:837-842,1993.

Steinmetz, B.M., Arbter, K., Brunner, B., Landzettel, K., “Autonomous Vision-
Based Navigation of the Nanokhod Rover,” in Proceedings of i-SAIRAS 6th Inter-
national Symposium on Artificial Intelligence, Robotics and Automation in Space,
Montreal, June 18-22, 2001.

Stentz, A., “The Focussed D* Algorithm for Real-Time Replanning,” in Proceed-
ings of 1JCAI-95, August 1995.

Stevens, B.S., Clavel, R., Rey, L., “The DELTA Parallel Structured Robot, Yet More
Performant through Direct Drive,” in Proceedings of the 23rd International
Symposium on Industrial Robots, Barcelona, October 1992, pp. 485-493.

Takeda, H., Facchinetti, C., Latombe, J.C., “Planning the Motions of a Mobile
Robot in a Sensory Uncertainty Field.” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 16:1002—-1017, 1994.

Thrun, S., Burgard, W., Fox, D., “A Probabilistic Approach to Concurrent Mapping
and Localization for Mobile Robots.” Autonomous Robots, 31:1-25. 1998.

Thrun, S., et al., “Monrovia: A Second Generation Museum Tour-Guide Robot,” in
Proceedings of the IEEE International Conference on Robotics and Automation
(ICRA'99), Detroit, May 1999.

Thrun, S., Fox, D., Burgard, W. Dellaert, F., “Robust Monte Carlo Localization for
Mobile Robots,” Artificial Intelligence, 128:99-141, 2001.

Thrun, S.,Gutmann, J.-S., Fox, D., Burgard, W., Kuipers, B., “Integrating Topolog- ical
and Metric Maps for Mobile Robot Navigation: A Statistical Approach,” in Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI),1998.

Tomasi, C., Shi, J., “Image Deformations Are Better Than Optical Flow.” Mathe-
matical and Computer Modelling, 24:165-175, 1996.

Tomatis, N., Nourbakhsh, I., Siegwart, R., “Hybrid Simultaneous Localization and
Map Building: A Natural Integration of Topological and Metric.” Robotics and
Autonomous Systems 44, 3—14, 2003.

Tzafestas, C.S., Tzafestas, S.G., “Recent Algorithms for Fuzzy and Neurofuzzy Path
Planning and Navigation of Autonomous Mobile Robots,” Systems-Science, 25:25—
39, 1999.

Ulrich, I., Borenstein, J., “VFH*: Local Obstacle Avoidance with Look-Ahead Ver-
ification,” in Proceedings of the IEEE International Conference on Robotics and
Automation, San Francisco, May 24-28, 2000.

260

Bibliography 261

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

Ulrich, I., Borenstein, J., “VFH+: Reliable Obstacle Avoidance for Fast Mobile
Robots,” in Proceedings of the International Conference on Robotics and Automa-
tion (ICRA’98), Leuven, Belgium, May 1998.

Ulrich, I., Nourbakhsh, I., “Appearance-Based Obstacle Detection with Monocular
Color Vision,” in the Proceedings of the AAAI National Conference on Artificial
Intelligence. Austin, TX. August 2000.

Ulrich, 1., Nourbakhsh, 1., “Appearance-Based Place Recognition for Topological
Localization,” in Proceedings of t he IEEE International Conference on Robotics
and Automation, San Francisco, pp. 1023-1029, April 2000.

Vanualailai, J., Nakagiri, S., Ha, J-H., “Collision Avoidance in a Two-Point System via
Liapunov’s Second Method.” Mathematics and Simulation, 39:125-141, 1995.

Van Winnendael, M., Visenti G., Bertrand, R., Rieder, R., “Nanokhod Microrover
Heading towards Mars,” in Proceedings of the Fifth International Symposium on
Artificial Intelligence, Robotics and Automation in Space (ESA SP-440), Noord-
wijk, Netherlands, pp. 69-76, 1999.

Weiss, G., Wetzler, C., Puttkamer, E., “Keeping Track of Position and Orientation
of Moving Indoor Systems by Correlation of Range-Finder Scans,” in Proceedings of
the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’94), Munich, pp.595-601, September 12-16,1994.

Woullschleger, F.H., Arra,s K.O., Vestli, S.J., “A Flexible Exploration Framework for
Map Building,” in Proceedings of the Third European Workshop on Advanced
Mobile Robots (Eurobot 99), Zurich, September 6-9,1999.

Yamauchi, B.,Schultz,A.,Adams, W., “Mobile Robot Exploration and Map-Build- ing
with Continuous Localization,” in Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA’98), Leuven, Belgium, May 1998.

Zhang, Z., “A Flexible New Technique for Camera Calibration.” Microsoft Research
Technical Report 98-71., Decembe_r 1998
[see also http://research.microsoft.com/~zhang].

Referenced Webpages

[159]
[160]

[161]
[162]
[163]

Fisher, R.B. (editor), “CVonline: On-line Compendium of Computer Vision,”
Available at www.dai.ed.ac.uk/CVonline/.

The Intel Image Processing Library:
http://developer.intel.com/software/products/ perflib/ipl/.

Source code release site: www.cs.cmu.edu/~jbruce/cmvision.
Newton Labs website: www.newtonlabs.com.
For probotics: http://www.personalrobots.com.

Interesting Internet Links to

Mobile Robots General

homepages with mainly mobile

261

http://research.microsoft.com/~zhang
http://www.dai.ed.ac.uk/CVonline/
http://developer.intel.com/software/products/
http://www.cs.cmu.edu/~jbruce/cmvision
http://www.newtonlabs.com/
http://www.personalrobots.com/

Bibliography 262

robots
http://ranier.hg.nasa.gov/telerobotics_page/coolrobots.html

http://www-
robotics.cs.umass.edu/robotics.html
http://www.ai.mit.edu/projects/mobile
-robots/

262

http://ranier.hq.nasa.gov/telerobotics_page/coolrobots.html
http://www-robotics.cs.umass.edu/robotics.html
http://www-robotics.cs.umass.edu/robotics.html
http://www.ai.mit.edu/projects/mobile-robots/
http://www.ai.mit.edu/projects/mobile-robots/

http://www.ri.cmu.edu/project_lists/index.html
http://www.roboticsclub.org/links.html http://www.activrobots.com/
http://asl.epfl.ch (at EPFL) http://robotics.epfl.ch

(at EPFL)

http://www.cs.cmu.edu/~illah/EDUTQOY (at CMU)
http://www.cs.cmu.edu/~mercator/ (at CMU)

Homepages with mainly wheeled mobile robots
http://www.laas.fr/RIA/RIA.html
http://www.cs.cmu.edu/~illah/lab.html
http://www.cs.umd.edu/projects/amrl/amrl.html
http://www.cc.gatech.edu/ai/robot-lab/
http://www.engin.umich.edu/research/mrl/index.html

Homepages with walking and climbing robots
http://www.uwe.ac.uk/clawar/
http://www.fzi.de/divisions/ipt/
http://www.automation.hut.fi/
http://www.ai.mit.edu/projects/leglab/ http://asl.epfl.ch/
http://www.cs.cmu.edu/~personalrover/

Homepages for robots on the Web
http://telerobot.mech.uwa.edu.au/secn/links.html
http://queue.lEOR.Berkeley.EDU/~goldberg/art/telerobotics-links.html
http://www.cs.uni-bonn.de/~rhino/
http://www.cs.cmu.edu/~minerva/
http://telerobot.mech.uwa.edu.au
http://www.ieor.berkeley.edu/~goldberg/GC/www.html
http://pumapaint.rwu.edu/ http://mars.graham.com/wits/
http://www.cs.cmu.edu/~illah/SAGE/index.html
http://www.dislocation.net/
http://rr-vs.informatik.uni-ulm.de/rr/
http://www.eventscope.org/Eventscope/main.htm

72. Appendices

Appendix A:
Matlab functions in ARSim

263

http://www.ri.cmu.edu/project_lists/index.html
http://www.roboticsclub.org/links.html
http://www.activrobots.com/
http://asl.epfl.ch/
http://robotics.epfl.ch/
http://robotics.epfl.ch/
http://www.cs.cmu.edu/~illah/EDUTOY
http://www.cs.cmu.edu/~mercator/
http://www.laas.fr/RIA/RIA.html
http://www.cs.cmu.edu/~illah/lab.html
http://www.cs.umd.edu/projects/amrl/amrl.html
http://www.cc.gatech.edu/ai/robot-lab/
http://www.engin.umich.edu/research/mrl/index.html
http://www.uwe.ac.uk/clawar/
http://www.fzi.de/divisions/ipt/
http://www.automation.hut.fi/
http://www.ai.mit.edu/projects/leglab/
http://asl.epfl.ch/
http://www.cs.cmu.edu/~personalrover/
http://telerobot.mech.uwa.edu.au/secn/links.html
http://queue.ieor.berkeley.edu/~goldberg/art/telerobotics-links.html
http://www.cs.uni-bonn.de/~rhino/
http://www.cs.cmu.edu/~minerva/
http://telerobot.mech.uwa.edu.au/
http://www.ieor.berkeley.edu/~goldberg/GC/www.html
http://pumapaint.rwu.edu/
http://mars.graham.com/wits/
http://www.cs.cmu.edu/~illah/SAGE/index.html
http://www.dislocation.net/
http://rr-vs.informatik.uni-ulm.de/rr/
http://www.eventscope.org/Eventscope/main.htm

The following is an alphabetical list of all the Matlab functions associated with ARS im.
For each function, the library to which the function belongs is given, along with the
interface of the function and a brief description. For further information, see the actual
source code for the function in question.

AddMotionResults Library:
ResultFunctions

Interface:

motionresults = AddMotionResults (oldMotionResults, time, robot)
Description: This function updates the motion results by adding the current position, velocity,
heading, and sensor readings of the robot.

BrainStep Library:

Interface: b = BrainStep (robot, time);

Description: The BrainStep implements the decision-making system (i.e. the brain)
of the robot. The detailed form of this function will vary from ex- periment to
experiment.

CalibrateOdometer

Library: RobotFunctions

Interface: 0 = CalibrateOdometer (robot)

Description: In simulations in which an odometer is used, acallto CalibrateOdometer is
made just before the start of the simulation, in order to set the correct posi-

tion and heading of the robot.

See also: CreateOdometer

113

264

Appendix A: Matlab functions in ARSIim 265

CheckForCollisions

Library: RobotFunctions

Interface: coll = CheckForCollisions (arena, robot); Description: This
function carries out a collision check, by running through all arena objects (polygons) line
by line, and checking for intersections between the current line and the spherical body
of the robot.

CreateArena

Library: ArenaFunctions

Interface: arena = CreateArena (name, size,objectArray) Description:

This function generates an arena, given an array of arena objects. See also:
CreateArenalObject

CreateArenaObject Library:

ArenaFunctions

Interface: arenaobject = CreateArenaObject (name,vertexArray)
Description: This function generates an arena object, given an array of coor- dinates
for vertices.

CreateBrain

Library: —
Interface: b = CreateBrain;

Description: This function generates the brain of a robot. Its exact form will vary from
experiment to experiment.

CreateCompass Library:

RobotFunctions

Interface: ¢ = CreateCompass (name, sigma) ;

Description: This function generates a compass which can be used for esti- mating the
heading of the robot. The parameter sigma determines the noise level.

CreatelRSensor Library:

RobotFunctions

Interface: s = CreateIRSensor (name, relativeAngle, size, numberOfRays,
openingAngle, range,cl,c2,sigma) ;

265

Appendix A: Matlab functions in ARSIim 266

Description: CreateIRSensor creates an IR sensor that uses the ray trac- ing
procedure described above to obtain its readings. The parameter sigma is defined as
in Eq. (3.1).

CreateMotor

Library: RobotFunctions

Interface:m = CreateMotor (name) ;

Description: CreateMotor generates a DC motor, using settings suitable for a
robot with a mass of a few kg.

CreateOdometer Library:

RobotFunctions

Interface: 0 = CreateOdometer (name, sigma) ;

Description: This function generates an odometer, which, in turn, provides estimates
for the position and heading of the robot. The parameter sigma determines the noise
level.

CreateRobot
Library: RobotFunctions

Interface: robot = CreateRobot (name,mass,momentOfInertia, radius,
wheelRadius, rayBasedSensorArray, motorArray,compass,odometer,brain)

Description: CreateRobot sets up a robot, and computes the dynamical pa-
rameters typical of a robot with a mass of a few kg.

GetCompassReading

Library: RobotFunctions
Interface: ¢ = GetCompassReading (robot, dt);

Description: This function updates the compass readings of a robot.

GetDistanceTolLineAlongRay Library:

RobotFunctions

Interface: 1 = GetDistanceToLineAlongRay (beta,pl,p2,x1,yl);
Description: This function, which is used by the IR sensors, computes the distance
from a given point (x, y1) to a line segment.

266

Appendix A: Matlab functions in ARSIim 267
See also: GetIRSensorReading, GetDistanceToNearestObject.

267

Appendix A: Matlab functions in ARSIim 268

GetDistanceToNearestObject

Library: RobotFunctions

Interface: d = GetDistanceToNearestObject (beta, x, vy, arena);
Description: This function, which is used by the IR sensors, determines the distance
between an IR sensor and the nearest object along a givenray.

See also: Get IRSensorReading.

GetlRSensorReading Library:
RobotFunctions
Interface: s = GetIRSensorReading (sensor,arena) ;

Description: Get IRSensorReading determines the reading of an IR sensor.

GetMinMaxAngle Library:

RobotFunctions
Interface: [aMin, aMax] = GetMinMaxAngle (vl,v2);

Description: This function determines the direction angles of the vectors con- necting
the origin of the coordinate system to the tips of a line segment.

See also: GetDistanceToNearestObject.
GetMotorSignalsFromBrain Library:
RobotFunctions

Interface: s = GetMotorSignalsFromBrain (brain) ;

Description: This function extracts the motor signals (one for each motor) from the
brain of the robot.

See also: MoveRobot.
GetOdometerReading
Library: RobotFunctions
Interface: 0 = GetOdometerReading (robot, dt);

Description: This function updates the odometer readings of a robot.

GetRayBasedSensorReadings Library:

RobotFunctions

268

Appendix A: Matlab functions in ARSIim 269

Interface: s = GetRayBasedSensorReadings (robot, arena) Description:

This function obtains the reading of all (IR) sensors of the robot. See also:
GetIRSensorReading.

269

Appendix A: Matlab functions in ARSIim 270

GetTorque
Library: RobotFunctions
Interface:m = GetTorque (motor, voltage);
Description: This function determines the torque delivered by a DC motor, given a
value of the applied voltage.
InitializeMotionResults

Library: ResultFunctions

Interface: motionResults = InitializeMotionResults (robot)
Description: This function initializes a Matlab structure used for storing the results
of the simulation, i.e. the position, velocity, heading, and sensor read- ings of the
robot.

InitPlot

Library: PlotFunctions

Interface: plotHandle = InitializePlot (robot, arena)
Description: This function generates the plot of the robot and the arena. See
also: CreateArena, CreateRobot.

MoveRobot
Library: RobotFunctions

Interface: r = MoveRobot (robot,dt) ;

Description: MoveRobot moves the robot according to the equations of mo- tion
for a differentially steered two-wheeled robot.

ScaleMotorSignals

Library:

RobotFunctions
Interface: v = ScaleMotorSignals (robot, s) ;

Description: This function scales the motor signals (s) to the appropriate range,
as set by the voltage requirements of the robot’s DC motors.

SetPositionAndVelocity

Library:

270

Appendix A: Matlab functions in ARSIim 271

RobotFunctions
Interface: r = SetPosition (robot,position,heading,

velocity,angularSpeed) ;
Description: This function places the robot at a given location, and also sets is
direction of motion, velocity, and angular velocity.

271

Arxendix A: Matlab functions in ARSIim 272
ShowRobot

Library: PlotFunctions

Interface: ShowRobot (plot, robot)

Description: sShowRobot updates the plot of the robot using
Matlab’s handle graphics: Each part of the plot of the robot can be
accessed and its position can be be updated. SshowRobot also
supports the plotting of an odometric ghost,

i.e. a plot showing the robot at the location determined by its odometer.

See also: MoveRobot.
UpdateMotorAxisAng
ularSpeed Library:

RobotFunctions
Interface: r = UpdateMotorAxisAngularSpeed (robot)

Description: This function determines the angular speed of each
motor axis, using the wheel speed and wheel radius.

UpdateSe
nsorPositi
ons
Library:
RobotFun
ctions

Interface: s = UpdateSensorPositions (robot) ;

Description: This function updates the positions (and directions) of the
sen- sors as the robot is moved.

272

